精英家教网 > 高中数学 > 题目详情
20.某校共有学生1800人,现从中随机抽取一个50人的样本,以估计该校学生的身体状况,测得样本身高小于195cm的频率分布直方图如图,由此估计该校身高不小于175的人数是288.

分析 由频率分布直方图得样本身高不小于175cm的频率,由此能估计该校身高不小于175cm的人数.

解答 解:由频率分布直方图得样本身高不小于175cm的频率为:
(0.012+0.004)×10=0.16,
∴估计该校身高不小于175cm的人数是:
1800×0.16=288.
故答案为:288.

点评 本题考查频数的求法,涉及到频率分布直方图等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若在甲袋内装有8个白球,4个红球,在乙袋内装有6个白球,6个红球,今从两袋里任意取出1个球,设取出的白球个数为ξ,则下列概率中等于$\frac{{C}_{8}^{1}{C}_{6}^{1}+{C}_{4}^{1}{C}_{6}^{1}}{{C}_{12}^{1}{C}_{12}^{1}}$ 的是(  )
A.P(ξ=0)B.P(ξ≤2)C.P(ξ=1)D.P(ξ=2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a,b,c都是正实数,a+b+c=1.
(1)求证:a2+b2+c2≥$\frac{1}{3}$;
(2)求证$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].则这200名学生中每周的自习时间不低于25小时的人数为(  )
A.30B.60C.80D.120

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.袋子中有大小、质地相同的红球、黑球各一个,现有放回地随机摸取3次,每次摸取一个球,若摸出红球,得10分,摸出黑球,得5分,则3次摸球所得总分至少是25分的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)证明:$({k+1})C_{n+1}^{k+1}=({n+1})C_n^k$;
(2)证明:$C_n^0-\frac{1}{2}C_n^1+\frac{1}{3}C_n^2-\frac{1}{4}C_n^3+…+\frac{{{{({-1})}^n}}}{n+1}C_n^n=\frac{1}{n+1}$;
(3)证明:$C_n^1-\frac{1}{2}C_n^2+\frac{1}{3}C_n^3-\frac{1}{4}C_n^4+…+\frac{{{{({-1})}^{n-1}}}}{n}C_n^n=1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在二项式(x-2)5的展开式中,含x3项的系数为(  )
A.-80B.-40C.40D.80

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设等差数列{an}的前n项和为Sn,若a4,a6是方程x2-18x+p=0的两根,那么S9=(  )
A.9B.81C.5D.45

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知x>1,则函数$y=\frac{{{x^2}+x+1}}{x-1}$的最小值为$3+2\sqrt{3}$.

查看答案和解析>>

同步练习册答案