精英家教网 > 高中数学 > 题目详情
4.等比数列{an}中,已知a1=2,a4=16.
(1)求数列{an}的通项公式;
(2)若a1,a2分别为等差数列{bn}的第1项和第2项,数列{bn}的前n项和为Sn,求证:$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$<1.

分析 (1)利用等比数列的通项公式即可得出;
(2)b1=2,b2=4,可得公差d=2.可得$\frac{1}{{S}_{n}}$=$\frac{1}{n}-\frac{1}{n+1}$.再利用“裂项求和”方法与数列的单调性即可证明.

解答 (1)解:设等比数列{an}的公比为q,∵a1=2,a4=16.
∴2q3=16,解得q=2.
∴an=2n
(2)证明:b1=2,b2=4,∴公差d=4-2=2.
∴Sn=2n+$\frac{n(n-1)}{2}×2$=n2+n.
∴$\frac{1}{{S}_{n}}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$<1.

点评 本题考查了等比数列与等差数列的通项公式及其前n项和公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.在空间直角坐标系Oxyz中,$\overrightarrow{i}$,$\overrightarrow{j}$,$\overrightarrow{k}$分别是x轴、y轴、z轴的方向向量,设$\overrightarrow{a}$为非零向量,且<$\overrightarrow{a}$,$\overrightarrow{i}$>=45°,<$\overrightarrow{a}$,$\overrightarrow{j}$>=60°,则<$\overrightarrow{a}$,$\overrightarrow{k}$>=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知曲线C1的参数方程为$\left\{\begin{array}{l}x=t-1\\ y=2t+1\end{array}\right.$(t为参数),曲线C2的极坐标方程为ρ=2cosθ.
(Ⅰ)分别求出曲线C1的普通方程和曲线C2的直角坐标方程;
(Ⅱ)若点P在曲线C2上,且P到曲线C1的距离为2,求满足这样条件的点P的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足a1=$\frac{1}{2}$,an+1an=2an+1-1(n∈N*),令bn=an-1.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)令cn=$\frac{{a}_{{2}^{n}+1}}{{a}_{{2}^{n}}}$,求证:c1+c2+…+cn<n+$\frac{7}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设数列{an}的前n项和为Sn,已知a1=2,Sn+1=an+1an+Sn+1,则S60=30.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在等腰△ABC中,BD和CE是两腰上的中线,且以BD⊥CE,求cosA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,曲线C1的参数方程是$\left\{\begin{array}{l}{x=t-\frac{1}{t}}\\{y=t+\frac{1}{t}}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρsin(θ+$\frac{π}{3}$)=1.
(1)求曲线C1的普通方程与曲线C2的直角坐标方程;
(2)求两曲线交点间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,OB是机器的曲柄,长是r,绕点O转动,AB是连杆,长为l,点A在直线Ox上往返运动,点P是AB的中点,当点B绕点O作圆周运动,求点P的轨迹的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.$f(x)=\left\{\begin{array}{l}-\frac{3}{x},x<0\\ 1+{log_3}x,\;\;\;x>0.\end{array}\right.$则 f(f(-1))等于2.

查看答案和解析>>

同步练习册答案