精英家教网 > 高中数学 > 题目详情
9.在等腰△ABC中,BD和CE是两腰上的中线,且以BD⊥CE,求cosA.

分析 连接DE,过E点作EF⊥BC,垂足为F,设DE=2x,DE为△ABC的中位线,故BC=4x,四边形BCDE为等腰梯形,根据等腰梯形的性质可知,BF=$\frac{1}{2}$(BC-DE)=x,则FC=3x,又△BCG为等腰直角三角形,故△CEF为等腰直角三角形,则EF=CF=3x,解Rt△BEF可求解cos∠BEF,利用二倍角公式可得顶角∠A的余弦值.

解答 解:如图,连接DE,过E点作EF⊥BC,垂足为F,设DE=2x,
依题意,得DE为△ABC的中位线,∴BC=4x,
又∵四边形BCDE为等腰梯形,
∴BF=$\frac{1}{2}$(BC-DE)=x,则FC=3x,
∵BD⊥CE,
∴△BCG为等腰直角三角形,
∵EF⊥BC,
∴△CEF为等腰直角三角形,
∴EF=CF=3x,
在Rt△BEF中,EF=3x,BF=x,BE=$\sqrt{10}$x,
∴cos∠BEF=$\frac{\sqrt{3}}{10}$,
∴cos∠A=2cos2∠BEF-1=2×$\frac{9}{10}$-1=$\frac{4}{5}$.

点评 本题考查了锐角三角函数值的求法,三角形中位线定理,梯形的性质.求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法,把问题转化到直角三角形中求三角函数值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.函数y=2sin(4x-$\frac{2π}{3}$)的图象(  )
A.关于原点对称B.关于x轴对称
C.关于直线x=-$\frac{π}{6}$对称D.关于点($\frac{π}{6}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线M的焦点F1,F2在x轴上,直线$\sqrt{7}x+3y=0$是双曲线M的一条渐近线,点P在双曲线M上,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,如果抛物线y2=16x的准线经过双曲线M的一个焦点,那么$|\overrightarrow{P{F_1}}|•|\overrightarrow{P{F_2}}|$=(  )
A.21B.14C.7D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.直线$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=1-\frac{{\sqrt{3}}}{2}t\end{array}\right.$( t为参数)倾斜角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.等比数列{an}中,已知a1=2,a4=16.
(1)求数列{an}的通项公式;
(2)若a1,a2分别为等差数列{bn}的第1项和第2项,数列{bn}的前n项和为Sn,求证:$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若方程$\left\{\begin{array}{l}{x=1-3t}\\{y=4t}\end{array}\right.$(t为参数)与$\left\{\begin{array}{l}{x=1+λcosθ}\\{y=λsinθ}\end{array}\right.$(λ为参数)表示同一条直线,则λ与t的关系是(  )
A.λ=5tB.λ=-5tC.t=5λD.t=-5λ

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知双曲线C的焦点在x轴上,渐近线方程是y=±2x,则C的离心率e=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合A={x|-1≤x<4},B={x|x2-4x+3<0},则A∩(∁RB)可表示为(  )
A.[-1,1)∪(3,4)B.[-1,1]∪[3,4)C.(1,3)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某中学共有学生2000名,校卫生室为了解学生身体健康状况,对全校学生按性别分别采用分层抽样的办法进行抽样调查,抽取了一个容量为200的样本,样本中男生107人,则该中学共有女生(  )
A.1070人B.1030人C.930人D.970人

查看答案和解析>>

同步练习册答案