精英家教网 > 高中数学 > 题目详情
2.在空间直角坐标系Oxyz中,$\overrightarrow{i}$,$\overrightarrow{j}$,$\overrightarrow{k}$分别是x轴、y轴、z轴的方向向量,设$\overrightarrow{a}$为非零向量,且<$\overrightarrow{a}$,$\overrightarrow{i}$>=45°,<$\overrightarrow{a}$,$\overrightarrow{j}$>=60°,则<$\overrightarrow{a}$,$\overrightarrow{k}$>=60°.

分析 由题意设$\overrightarrow{i}=(1,0,0),\overrightarrow{j}=(0,1,0),\overrightarrow{k}=(0,0,1)$,$\overrightarrow{a}=(x,y,z)$,结合<$\overrightarrow{a}$,$\overrightarrow{i}$>=45°,<$\overrightarrow{a}$,$\overrightarrow{j}$>=60°,列式得到x,y,z的关系,然后再由数量积求夹角公式求得<$\overrightarrow{a}$,$\overrightarrow{k}$>.

解答 解:由题意可设$\overrightarrow{i}=(1,0,0),\overrightarrow{j}=(0,1,0),\overrightarrow{k}=(0,0,1)$,
再设$\overrightarrow{a}=(x,y,z)$,
由<$\overrightarrow{a}$,$\overrightarrow{i}$>=45°,<$\overrightarrow{a}$,$\overrightarrow{j}$>=60°,
得cos45°=$\frac{\sqrt{2}}{2}=\frac{x}{\sqrt{{x}^{2}+{y}^{2}+{z}^{2}}}$,$cos60°=\frac{1}{2}=\frac{y}{\sqrt{{x}^{2}+{y}^{2}+{z}^{2}}}$,
即${x}^{2}=\frac{1}{2}({x}^{2}+{y}^{2}+{z}^{2})$,${y}^{2}=\frac{1}{4}({x}^{2}+{y}^{2}+{z}^{2})$,
解得${y}^{2}={z}^{2}=\frac{1}{2}{x}^{2}$.
∴cos<$\overrightarrow{a}$,$\overrightarrow{k}$>=$\frac{z}{\sqrt{{x}^{2}+{y}^{2}+{z}^{2}}}=\sqrt{\frac{{z}^{2}}{{x}^{2}+{y}^{2}+{z}^{2}}}=\sqrt{\frac{\frac{1}{2}{x}^{2}}{2{x}^{2}}}$=$\frac{1}{2}$.
∴<$\overrightarrow{a}$,$\overrightarrow{k}$>=60°.
故答案为:60°.

点评 本题考查平面向量的数量积运算,考查了由数量积求向量的夹角,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.己知$\overrightarrow{a}$=(sinx,cos2x-sin2x),$\overrightarrow{b}$=(cosx,$\frac{\sqrt{3}}{2}$),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求函数f(x)的单调递增区间;
(2)求函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.数列{an}的通项公式为an=2n-1,则前n项和Sn=(  )
A.n2-1B.n2C.n2+1D.(n+1)2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若$\frac{α}{2}$是第四象限角,且sin$\frac{α}{2}$=-$\frac{\sqrt{3}}{3}$,则cosα=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.判断方程$\frac{x}{4}$-cosx=0的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=2sin(4x-$\frac{2π}{3}$)的图象(  )
A.关于原点对称B.关于x轴对称
C.关于直线x=-$\frac{π}{6}$对称D.关于点($\frac{π}{6}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线l:y=x+n与椭圆G:(3-m)x2+my2=m(3-m)交于两点B,C.
(Ⅰ)若椭圆G的焦点在y轴上,求m的取值范围;
(Ⅱ)若A(0,1)在椭圆上,且以BC为直径的圆过点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA1=$\sqrt{2}$,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.等比数列{an}中,已知a1=2,a4=16.
(1)求数列{an}的通项公式;
(2)若a1,a2分别为等差数列{bn}的第1项和第2项,数列{bn}的前n项和为Sn,求证:$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$<1.

查看答案和解析>>

同步练习册答案