16£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=t-\frac{1}{t}}\\{y=t+\frac{1}{t}}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌÊǦÑsin£¨¦È+$\frac{¦Ð}{3}$£©=1£®
£¨1£©ÇóÇúÏßC1µÄÆÕͨ·½³ÌÓëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÇóÁ½ÇúÏß½»µã¼äµÄ¾àÀ룮

·ÖÎö £¨1£©½«C1µÄ²ÎÊý·½³ÌÁ½±ßƽ·ÖÔÙÏà¼õÏûÈ¥²ÎÊýtµÃµ½ÆÕͨ·½³Ì£¬½«C2µÄ¼«×ø±ê·½³ÌÕ¹¿ª£¬¸ù¾Ý¼«×ø±êÓëÖ±½Ç×ø±êµÄ¶ÔÓ¦¹ØÏµµÃ³öC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©Çó³öC2µÄ²ÎÊý·½³Ì£¬´úÈëC1µÄÆÕͨ·½³Ì£¬¸ù¾Ý²ÎÊýµÄ¼¸ºÎÒâÒåµÃ³ö½»µã¼äµÄ¾àÀ룮

½â´ð ½â£º£¨1£©¡ßÇúÏßC1µÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=t-\frac{1}{t}}\\{y=t+\frac{1}{t}}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
¡à$\left\{\begin{array}{l}{{x}^{2}={t}^{2}+\frac{1}{{t}^{2}}-2}\\{{y}^{2}={t}^{2}+\frac{1}{{t}^{2}}+2}\end{array}\right.$£¬
¡àÇúÏßC1µÄÆÕͨ·½³ÌΪy2-x2=4£®¼´$\frac{{y}^{2}}{4}-\frac{{x}^{2}}{4}=1$£®
¡ßÇúÏßC2µÄ¼«×ø±ê·½³ÌÊǦÑsin£¨¦È+$\frac{¦Ð}{3}$£©=1£¬¼´$\frac{1}{2}¦Ñsin¦È$+$\frac{\sqrt{3}}{2}$¦Ñcos¦È=1£¬
¡àÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪ$\frac{1}{2}$y+$\frac{\sqrt{3}}{2}x$-1=0£®¼´$\sqrt{3}$x+y-2=0£®
£¨2£©ÇúÏßC2µÄбÂÊk=-$\sqrt{3}$£¬ÇÒ¹ýµã£¨$\sqrt{3}$£¬-1£©£®
¡àÖ±ÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}-\frac{1}{2}t}\\{y=-1+\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®
´úÈëC1µÄÆÕͨ·½³ÌµÃ£ºt2=12£®¡àt1=2$\sqrt{3}$£¬t2=-2$\sqrt{3}$£®
¡àÁ½ÇúÏß½»µã¼äµÄ¾àÀëΪ|t1-t2|=4$\sqrt{3}$£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì£¬¼«×ø±ê·½³ÌÓëÆÕͨ·½³ÌµÄת»¯£¬²ÎÊýµÄ¼¸ºÎÒâÒå¼°Ó¦Óã¬ÊôÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÖ±Ïßl£ºy=x+nÓëÍÖÔ²G£º£¨3-m£©x2+my2=m£¨3-m£©½»ÓÚÁ½µãB£¬C£®
£¨¢ñ£©ÈôÍÖÔ²GµÄ½¹µãÔÚyÖáÉÏ£¬ÇómµÄȡֵ·¶Î§£»
£¨¢ò£©ÈôA£¨0£¬1£©ÔÚÍÖÔ²ÉÏ£¬ÇÒÒÔBCΪֱ¾¶µÄÔ²¹ýµãA£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÅ×ÎïÏßC£ºy2=4x£¬Ö±Ïßl£º$y=\frac{1}{2}x+b$ÓëC½»ÓÚA¡¢BÁ½µã£¬OÎª×ø±êÔ­µã£®
£¨1£©µ±Ö±Ïßl¹ýÅ×ÎïÏßCµÄ½¹µãFʱ£¬Çó|AB|£»
£¨2£©ÊÇ·ñ´æÔÚÖ±ÏßlʹµÃÖ±ÏßOA¡ÍOB£¿Èô´æÔÚ£¬Çó³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®µÈ±ÈÊýÁÐ{an}ÖУ¬ÒÑÖªa1=2£¬a4=16£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Èôa1£¬a2·Ö±ðΪµÈ²îÊýÁÐ{bn}µÄµÚ1ÏîºÍµÚ2ÏÊýÁÐ{bn}µÄǰnÏîºÍΪSn£¬ÇóÖ¤£º$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+¡­+$\frac{1}{{S}_{n}}$£¼1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Ö±Ïßy=kx+1ÓëÔ²C£ºx2+y2=1½»ÓÚP¡¢QÁ½µã£¬ÒÔOP¡¢OQΪÁÚ±ß×÷ƽÐÐËıßÐÎOPMQ£¬ÇÒµãMÇ¡ÔÚÔ²CÉÏ£¬Ôòk=¡À$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑ֪˫ÇúÏßCµÄ½¹µãÔÚxÖáÉÏ£¬½¥½üÏß·½³ÌÊÇy=¡À2x£¬ÔòCµÄÀëÐÄÂÊe=$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªÔ²C£º£¨x-$\sqrt{3}$£©2+£¨y-1£©2=1ºÍÁ½µãA£¨-t£¬0£©£¬B£¨t£¬0£©£¨t£¾0£©£¬ÈôÔ²CÉÏ´æÔÚµãP£¬Ê¹µÃ¡ÏAPB=90¡ã£¬ÔòtµÄ×îСֵΪ£¨¡¡¡¡£©
A£®4B£®3C£®2D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖª¦È¡Ê£¨$\frac{¦Ð}{2}$£¬¦Ð£©£¬sin¦È+cos¦È=-$\frac{{\sqrt{10}}}{5}$£¬Ôòtan£¨¦È-$\frac{¦Ð}{4}$£©µÄֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®2C£®$-\frac{1}{2}$D£®-2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®º¯Êýf£¨x£©=$\frac{{x{{log}_a}|x|}}{|x|}$£¨0£¼a£¼1£©Í¼ÏóµÄ´óÖÂÐÎ×´ÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸