分析 (Ⅰ)通过设正项等比数列{an}的公比为q(q>1),利用已知条件建立方程组,进而计算可得结论;
(Ⅱ)通过(I)可知${log_2}{a_n}={log_2}(3×{2^{n-1}})={log_2}3+n-1$,进而利用分组求和法计算即得结论.
解答 解:(Ⅰ)设正项等比数列{an}的公比为q(q>1),
由2a1+a2=a3得$2{a_1}+{a_1}q={a_1}{q^2}$,
故q2-q-2=0,
解得q=2,或q=-1(舍去).…(2分)
由3a6=8a1a3得$3{a_1}{q^5}=8a_1^2{q^2}$,故a1=3. …(4分)
于是数列{an}的通项公式为${a_n}=3×{2^{n-1}}$.…(6分)
(Ⅱ)由于${log_2}{a_n}={log_2}(3×{2^{n-1}})={log_2}3+n-1$…(8分)
故bn=(log23+0)+(log23+1)+(log23+2)…+(log23+n-1)-nlog23
=$1+2+…+(n-1)=\frac{n(n-1)}{2}$. …(12分)
点评 本题考查数列的通项及前n项和,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:填空题
| x | 0 | 1 | 2 | 3 | 4 |
| y | 1 | 1.3 | 3.2 | 5.6 | 8.9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{3}$ | B. | 2 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | l⊥m1且l⊥m2 | B. | l⊥m1且l⊥n | C. | l⊥m1 | D. | l⊥n |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (1,3) | C. | (0,3) | D. | (3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com