精英家教网 > 高中数学 > 题目详情
9.已知集合M={x|3x-x2>0},N={x|x2-4x+3>0},则M∩N=(  )
A.(0,1)B.(1,3)C.(0,3)D.(3,+∞)

分析 分别求出M与N中不等式的解集确定出M与N,找出两集合的交集即可.

解答 解:由M中不等式变形得:x(x-3)<0,
解得:0<x<3,即M=(0,3),
由N中不等式变形得:(x-1)(x-3)>0,
解得:x<1或x>3,即N=(-∞,1)∪(3,+∞),
则M∩N=(0,1),
故选:A.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设等差数列{an}的前n项和为Sn,且S5=5S2,2a1+1=a3
(1)求数列{an}的通项公式;
(2)设数列bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知抛物线C1:y2=2px(p>0)过第四象限的点M,直线l:2x-$\sqrt{2}$y-2=0过抛物线C1的焦点F.若|MF|=3,则以M为圆心,且与直线l相切的圆的方程为(  )
A.(x-2)2+(y+2$\sqrt{2}$)2=8B.(x-2)2+(y+2$\sqrt{2}$)2=64C.(x-2)2+(y+2$\sqrt{2}$)2=6D.(x-2)2+(y+2$\sqrt{2}$)2=36

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若向量$\overrightarrow a$=(4,2,4),$\overrightarrow b$=(6,3,-2),则(2$\overrightarrow a$-3$\overrightarrow b$)•($\overrightarrow a$+2$\overrightarrow b$)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知正项等比数列{an}中,2a1+a2=a3,3a6=8a1a3
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2a1+log2a2+…+log2an-nlog23,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知1≤x≤100,xy2=100,u=(lgx)2+a(lgy)2(a是常数,a∈R)
①写出u关于y的函数解析式.
②求u的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,直线l:$\left\{\begin{array}{l}{x=-\sqrt{2}+tcosθ}\\{y=tsinθ}\end{array}\right.$(t为参数),其中0≤θ≤π,椭圆C:$\left\{\begin{array}{l}{x=\sqrt{3}cosφ}\\{y=sinφ}\end{array}\right.$(φ为参数),其中0≤φ<2π,直线l与y轴的正半轴交于点M,与椭圆C交于A,B两点,其中点A在第一象限.
(1)写出椭圆C的普通方程及点M对应的参数tM(用θ表示);
(2)设椭圆C的左焦点F1,若|F1B|=|AM|,求直线l的倾斜角θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列命题正确的个数是(  )
①命题“?x0∈R,x02+1>3x0”的否定是“?x∈R,x2+1≤3x”;
②已知a=log47,b=log23,c=0.2-0.6,则a<b<c;
③“平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是钝角”的充分必要条件是“$\overrightarrow{a}$•$\overrightarrow{b}$<0”;
④已知数列{an}为等比数列,则a1<a2<a3是数列{an}为递增数列的必要条件.
A.3个B.4个C.1个D.2个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若复数z满足z=1+$\frac{1}{i}$(i为虚数单位),则复数z的共轭复数|$\overline{z}$|的模为(  )
A.0B.1C.$\sqrt{2}$D.2

查看答案和解析>>

同步练习册答案