精英家教网 > 高中数学 > 题目详情
14.在△ABC中,角A、B、C与边a,b,c满足asinAsinB+bcos2A=$\sqrt{2}$a.
(1)求$\frac{b}{a}$的值;
(2)若c=2,且△ABC面积为2$\sqrt{2}$,求边长a.

分析 (1)利用正弦定理把已知等式中边转换为角的正弦,化简整理即可求得答案.
(2)利用三角形的面积公式,求出sinB,再求出cosA,再根据余弦定理,得到关于a的方程,解得即可.

解答 解:(1)在△ABC中,∵asinAsinB+bcos2A=$\sqrt{2}$a,
∴sin2AsinB+sinBcos2A=$\sqrt{2}$sinA,
∴sinB=$\sqrt{2}$sinA,
∴b=$\sqrt{2}$a,
∴$\frac{b}{a}$=$\sqrt{2}$
(2)∵c=2,且△ABC面积为2$\sqrt{2}$,
∴$\frac{1}{2}$acsinB=2$\sqrt{2}$,
∴sinB=$\frac{2\sqrt{2}}{a}$,
∴sinA=$\frac{2}{a}$,
∴cosA=$\sqrt{1-\frac{4}{{a}^{2}}}$,
由余弦定理有a2=c2+b2-2bccosA=4+2a2-4$\sqrt{2}$•$\sqrt{{a}^{2}-4}$
∴4$\sqrt{2}$•$\sqrt{{a}^{2}-4}$=a2+4,
∴(a2-12)2=0,
∴a2=12,
∴a=2$\sqrt{3}$

点评 本题主要考查了正弦定理余弦定理三角形的面积的应用,以及方程的解法,培养了学生的运算能力和转化能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知正项等比数列{an}中,2a1+a2=a3,3a6=8a1a3
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2a1+log2a2+…+log2an-nlog23,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足a1=m,an+1=$\left\{\begin{array}{l}{2{a}_{n},n=2k-1}\\{{a}_{n}+r,n=2k}\end{array}\right.$(k∈N*,r∈R),其前n项和为Sn
(1)当m与r满足什么关系时,对任意的n∈N*,数列{an}都满足an+2=an
(2)对任意实数m,r,是否存在实数p与q,使得{a2n+1+p}与{a2n+q}是同一个等比数列?若存在,请求出p,q满足的条件;若不存在,请说明理由;
(3)当m=r=1时,若对任意的n∈N*,都有Sn≥λan,求实数λ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+{2}^{n}}$,则f(k+1)-f(k)=$\frac{1}{k+1{+2}^{k}}$+$\frac{1}{k+2{+2}^{k}}$+…+$\frac{1}{k+1{+2}^{k+1}}$-$\frac{1}{k+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{m-{x}^{2},x≥0}\end{array}\right.$,给出下列两个命题:
命题p:若m=$\frac{1}{4}$,则f(f(-1)=0.
命题q:?m∈(-∞,0),方程f(x)=0有解.
那么,下列命题为真命题的是(  )
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若复数z满足z=1+$\frac{1}{i}$(i为虚数单位),则复数z的共轭复数|$\overline{z}$|的模为(  )
A.0B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求圆(x-3)2+y2=1关于点P(0,1)对称的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设{an}是公比为q(q≠1)的无穷等比数列,若{an}中任意两项之积仍是该数列中的项,则称{an}为“封闭等比数列”.给出以下命题:
(1)a1=3,q=2,则{an}是“封闭等比数列”;
(2)a1=$\frac{1}{2}$,q=2,则{an}是“封闭等比数列”;
(3)若{an},{bn}都是“封闭等比数列”,则{an•bn},{an+bn}也都是“封闭等比数列”;
(4)不存在{an},使{an}和{an2}都是“封闭等比数列”;
以上正确的命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知实数x,y满足$\left\{\begin{array}{l}{x≥-3}\\{y≤2}\\{x-y-1≤0}\end{array}\right.$,则$\frac{2y-2}{x-4}$的最大值$\frac{10}{7}$.

查看答案和解析>>

同步练习册答案