分析 (1)利用正弦定理把已知等式中边转换为角的正弦,化简整理即可求得答案.
(2)利用三角形的面积公式,求出sinB,再求出cosA,再根据余弦定理,得到关于a的方程,解得即可.
解答 解:(1)在△ABC中,∵asinAsinB+bcos2A=$\sqrt{2}$a,
∴sin2AsinB+sinBcos2A=$\sqrt{2}$sinA,
∴sinB=$\sqrt{2}$sinA,
∴b=$\sqrt{2}$a,
∴$\frac{b}{a}$=$\sqrt{2}$
(2)∵c=2,且△ABC面积为2$\sqrt{2}$,
∴$\frac{1}{2}$acsinB=2$\sqrt{2}$,
∴sinB=$\frac{2\sqrt{2}}{a}$,
∴sinA=$\frac{2}{a}$,
∴cosA=$\sqrt{1-\frac{4}{{a}^{2}}}$,
由余弦定理有a2=c2+b2-2bccosA=4+2a2-4$\sqrt{2}$•$\sqrt{{a}^{2}-4}$
∴4$\sqrt{2}$•$\sqrt{{a}^{2}-4}$=a2+4,
∴(a2-12)2=0,
∴a2=12,
∴a=2$\sqrt{3}$
点评 本题主要考查了正弦定理余弦定理三角形的面积的应用,以及方程的解法,培养了学生的运算能力和转化能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | (¬p)∧q | C. | p∧(¬q) | D. | (¬p)∧(¬q) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com