3£®Éè{an}Êǹ«±ÈΪq£¨q¡Ù1£©µÄÎÞÇîµÈ±ÈÊýÁУ¬Èô{an}ÖÐÈÎÒâÁ½ÏîÖ®»ýÈÔÊǸÃÊýÁÐÖеÄÏÔò³Æ{an}Ϊ¡°·â±ÕµÈ±ÈÊýÁС±£®¸ø³öÒÔÏÂÃüÌ⣺
£¨1£©a1=3£¬q=2£¬Ôò{an}ÊÇ¡°·â±ÕµÈ±ÈÊýÁС±£»
£¨2£©a1=$\frac{1}{2}$£¬q=2£¬Ôò{an}ÊÇ¡°·â±ÕµÈ±ÈÊýÁС±£»
£¨3£©Èô{an}£¬{bn}¶¼ÊÇ¡°·â±ÕµÈ±ÈÊýÁС±£¬Ôò{an•bn}£¬{an+bn}Ò²¶¼ÊÇ¡°·â±ÕµÈ±ÈÊýÁС±£»
£¨4£©²»´æÔÚ{an}£¬Ê¹{an}ºÍ{an2}¶¼ÊÇ¡°·â±ÕµÈ±ÈÊýÁС±£»
ÒÔÉÏÕýÈ·µÄÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®0B£®1C£®2D£®3

·ÖÎö £¨1£©Çó³ö${a_n}=3•{2^{n-1}}$£¬ÓÉa1•a2∉{an}£¬Öª£¨1£©´íÎ󣻣¨2£©ÓÉ${a_n}=\frac{1}{2}•{2^{n-1}}={2^{n-2}}$£¬ÍƵ¼³öÃüÌ⣨2£©ÕýÈ·£»£¨3£©${a_n}+{b_n}=3•{2^{n-1}}$²»ÊÇ¡°·â±ÕµÈ±ÈÊýÁС±£»£¨4£©Èô${a_n}={2^n}$Ϊ¡°·â±ÕµÈ±ÈÊýÁС±£¬Ôò$a_n^2={4^n}$Ϊ¡°·â±ÕµÈ±ÈÊýÁС±£®

½â´ð ½â£º£¨1£©¡ß{an}ÊÇa1=3£¬q=2µÄµÈ±ÈÊýÁУ¬
¡à${a_n}=3•{2^{n-1}}$£¬
ÓÉÌâÒâµÃa1•a2=3¡Á6=18∉{an}£¬¹ÊÃüÌ⣨1£©´íÎó£»
£¨2£©¡ß${a_n}=\frac{1}{2}•{2^{n-1}}={2^{n-2}}$£¬
¡à${a_m}•{a_n}={2^{m-2}}•{2^{n-2}}={2^{m+n-4}}={2^{£¨{m+n-2}£©-2}}={a_{m+n-2}}£¬m+n-2¡Ê{N^*}$£¬¹ÊÃüÌ⣨2£©ÕýÈ·£»
£¨3£©Èô${a_n}={2^{n-1}}£¬{b_n}={2^n}$¶¼Îª¡°·â±ÕµÈ±ÈÊýÁС±£¬
Ôò${a_n}+{b_n}=3•{2^{n-1}}$²»ÊÇ¡°·â±ÕµÈ±ÈÊýÁС±£¬¹ÊÃüÌ⣨3£©´íÎó£»
£¨4£©Èô${a_n}={2^n}$Ϊ¡°·â±ÕµÈ±ÈÊýÁС±£¬Ôò$a_n^2={4^n}$Ϊ¡°·â±ÕµÈ±ÈÊýÁС±£¬¹ÊÃüÌ⣨4£©´íÎó£®
¹ÊÑ¡£ºB£®

µãÆÀ ±¾Ì⿼²éÃüÌâÕæ¼ÙµÄÅжϣ¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâµÈ±ÈÊýÁС¢·â±ÕµÈ±ÈÊýÁеÄÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®¸´Êý$\frac{1}{i-2}$-$\frac{i}{1+2i}$ÔÚ¸´Æ½ÃæÄÚËù¶ÔÓ¦µÄµãλÓÚ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÔÚ¡÷ABCÖУ¬½ÇA¡¢B¡¢CÓë±ßa£¬b£¬cÂú×ãasinAsinB+bcos2A=$\sqrt{2}$a£®
£¨1£©Çó$\frac{b}{a}$µÄÖµ£»
£¨2£©Èôc=2£¬ÇÒ¡÷ABCÃæ»ýΪ2$\sqrt{2}$£¬Çó±ß³¤a£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªµãMÊÇÅ×ÎïÏßC1£ºy2=2px£¨p£¾0£©µÄ×¼ÏßÓëxÖáµÄ½»µã£¬µãPÊÇÅ×ÎïÏßC1Éϵ͝µã£¬µãA¡¢BÔÚyÖáÉÏ£¬¡÷APBµÄÄÚÇÐԲΪԲC2£¬£¨xÒ»1£©2+y2=1£¬ÇÒ|MC2|=3|OM|Îª×ø±êÔ­µã£®
£¨I£©ÇóÅ×ÎïÏßC1µÄ±ê×¼·½³Ì£»
£¨¢ò£©Çó¡÷APBÃæ»ýµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®¶¨Ò庯Êýf£¨x£©ÈçÏ£º¶ÔÓÚʵÊýx£¬Èç¹û´æÔÚÕûÊým£¬Ê¹µÃ|x-m|£¼$\frac{1}{2}$£¬Ôòf£¨x£©=m£¬ÔòÏÂÁнáÂÛ£º
£¨1£©f£¨x£©ÊÇʵÊýRÉϵĵÝÔöº¯Êý£»
£¨2£©f£¨x£©ÊÇÖÜÆÚΪ1µÄº¯Êý£»
£¨3£©f£¨x£©ÊÇÆæº¯Êý£»
£¨4£©º¯Êýf£¨x£©µÄͼÏóÓëÖ±Ïßy=xÓÐÇÒ½öÓÐÒ»¸ö½»µã£¬
ÔòÕýÈ·µÄ½áÂÛµÄÐòºÅÊÇ£¨3£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖª$\left\{\begin{array}{l}5x+4y¡Ü26\\ 2x+5y-13¡Ü0\\ x¡ÊN\\ y¡ÊN\end{array}\right.$£¬ÔòÄ¿±êº¯Êýz=20x+10yµÄ×î´óֵΪ100£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªPÊÇÅ×ÎïÏßy2=4xÉÏÒ»µã£¬FÊǸÃÅ×ÎïÏߵĽ¹µã£¬ÔòÒÔPFΪֱ¾¶ÇÒ¹ý£¨0£¬2£©µÄÔ²µÄ±ê×¼·½³ÌΪ£¨x-2.5£©2+£¨y-2£©2=6.25£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªº¯Êýy=$\sqrt{1-x}$+$\sqrt{x+3}$µÄ×î´óֵΪM£¬×îСֵΪm£¬Ôò$\frac{m}{M}$µÄֵΪ$\frac{\sqrt{2}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSnÂú×ãan+2SnSn-1=0£¨n¡Ý2£©£¬a1=1£¬ÇóÊýÁÐ{an}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸