分析 (1)由题意a1=m,an+1=$\left\{\begin{array}{l}{2{a}_{n},n=2k-1}\\{{a}_{n}+r,n=2k}\end{array}\right.$(k∈N*,r∈R),得a2=2a1=2m,a3=a2+r=2m+r,由a3=a1,得m+r=0.当m+r=0时,可得:an+1=$\left\{\begin{array}{l}{2{a}_{n},n=2k-1}\\{{a}_{n}-m,n=2k}\end{array}\right.$(k∈N*),即可得出.
(2)依题意,a2n+1=a2n+r=2a2n-1+r,则a2n+1+r=2(a2n-1+r),由a1+r=m+r,当m+r≠0时,{a2n+1+r}是等比数列,且a2n+1+r=$({a}_{1}+r)•{2}^{n}$=(m+r)•2n.
为使{a2n+1+p}是等比数列,则p=r.同理,当m+r≠0时,a2n+2r=(m+r)•2n,则{a2n+2r}是等比数列,则q=2r.即可得出.
(3)当m=r=1时,由(2)可得a2n-1=2n-1,a2n=2n+1-2,当n=2k时,an=a2k=2k+1-2;当n=2k-1时,an=a2k-1=2k-1,进而得出.
解答 解:(1)由题意a1=m,an+1=$\left\{\begin{array}{l}{2{a}_{n},n=2k-1}\\{{a}_{n}+r,n=2k}\end{array}\right.$(k∈N*,r∈R),
得a2=2a1=2m,a3=a2+r=2m+r,
首先由a3=a1,得m+r=0.
当m+r=0时,可得:an+1=$\left\{\begin{array}{l}{2{a}_{n},n=2k-1}\\{{a}_{n}-m,n=2k}\end{array}\right.$(k∈N*),
∴a1=a3=…=m,
a2=a4=…=2m,
故对任意的n∈N*,数列{an}都满足an+2=an.
即当实数m,r满足m+r=0时,题意成立.
(2)依题意,a2n+1=a2n+r=2a2n-1+r,则a2n+1+r=2(a2n-1+r),
因为a1+r=m+r,所以当m+r≠0时,{a2n+1+r}是等比数列,且a2n+1+r=$({a}_{1}+r)•{2}^{n}$=(m+r)•2n.
为使{a2n+1+p}是等比数列,则p=r.
同理,当m+r≠0时,a2n+2r=(m+r)•2n,则{a2n+2r}是等比数列,则q=2r.
综上所述:
①若m+r=0,则不存在实数p,q,使得{a2n+1+p}与{a2n+q}是等比数列;
②若m+r≠0,则当p,q满足q=2p=2r时,{a2n+1+p}与{a2n+q}是同一个等比数列.
(3)当m=r=1时,由(2)可得a2n-1=2n-1,a2n=2n+1-2,
当n=2k时,an=a2k=2k+1-2,
Sn=S2k=(2+22+…+2k)+(22+23+…+2k+1)-3k=$\frac{2({2}^{k}-1)}{2-1}$+$\frac{4({2}^{k}-1)}{2-1}$-3k=3(2k+1-k-2).
所以$\frac{{S}_{n}}{{a}_{n}}$=3$(1-\frac{k}{{2}^{k+1}-2})$,
令ck=$\frac{k}{{2}^{k+1}-2}$,则ck+1-ck=$\frac{k+1}{{2}^{k+2}-2}$-$\frac{k}{{2}^{k+1}-2}$=$\frac{(1-k)•{2}^{k+1}-2}{({2}^{k+2}-2)({2}^{k+1}-2)}$<0,
所以$\frac{{S}_{n}}{{a}_{n}}$$≥\frac{3}{2}$,$λ≤\frac{3}{2}$,
当n=2k-1时,an=a2k-1=2k-1,Sn=S2k-a2k=3(2k+1-k-2)-(2k+1-2)=2k+2-3k-4,
所以$\frac{{S}_{n}}{{a}_{n}}$=4-$\frac{3k}{{2}^{k}-1}$,同理可得$\frac{{S}_{n}}{{a}_{n}}$≥1,λ≤1,
综上所述,实数λ的最大值为1.
点评 本题考查了数列的递推关系、等比数列的通项公式及其前n项和公式、不等式的性质,考查了分类讨论方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com