精英家教网 > 高中数学 > 题目详情
10.已知全集U={1,2,3,4,5},A={1,2},B={2,3,4},那么A∪(∁UB)={1,2,5}.

分析 先求出B的补集,再求出其与A的并集,从而得到答案.

解答 解:∵U={1,2,3,4,5},又B={2,3,4},
∴(CUB)={1,5},
又A={1,2},∴A∪(CUB)={1,2,5}.
故答案为:{1,2,5}.

点评 本题考查了集合的混合运算,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知抛物线C1:y2=2px(p>0)过第四象限的点M,直线l:2x-$\sqrt{2}$y-2=0过抛物线C1的焦点F.若|MF|=3,则以M为圆心,且与直线l相切的圆的方程为(  )
A.(x-2)2+(y+2$\sqrt{2}$)2=8B.(x-2)2+(y+2$\sqrt{2}$)2=64C.(x-2)2+(y+2$\sqrt{2}$)2=6D.(x-2)2+(y+2$\sqrt{2}$)2=36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,直线l:$\left\{\begin{array}{l}{x=-\sqrt{2}+tcosθ}\\{y=tsinθ}\end{array}\right.$(t为参数),其中0≤θ≤π,椭圆C:$\left\{\begin{array}{l}{x=\sqrt{3}cosφ}\\{y=sinφ}\end{array}\right.$(φ为参数),其中0≤φ<2π,直线l与y轴的正半轴交于点M,与椭圆C交于A,B两点,其中点A在第一象限.
(1)写出椭圆C的普通方程及点M对应的参数tM(用θ表示);
(2)设椭圆C的左焦点F1,若|F1B|=|AM|,求直线l的倾斜角θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列命题正确的个数是(  )
①命题“?x0∈R,x02+1>3x0”的否定是“?x∈R,x2+1≤3x”;
②已知a=log47,b=log23,c=0.2-0.6,则a<b<c;
③“平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是钝角”的充分必要条件是“$\overrightarrow{a}$•$\overrightarrow{b}$<0”;
④已知数列{an}为等比数列,则a1<a2<a3是数列{an}为递增数列的必要条件.
A.3个B.4个C.1个D.2个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足a1=m,an+1=$\left\{\begin{array}{l}{2{a}_{n},n=2k-1}\\{{a}_{n}+r,n=2k}\end{array}\right.$(k∈N*,r∈R),其前n项和为Sn
(1)当m与r满足什么关系时,对任意的n∈N*,数列{an}都满足an+2=an
(2)对任意实数m,r,是否存在实数p与q,使得{a2n+1+p}与{a2n+q}是同一个等比数列?若存在,请求出p,q满足的条件;若不存在,请说明理由;
(3)当m=r=1时,若对任意的n∈N*,都有Sn≥λan,求实数λ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设△ABC的内角A、B、C的对边分别为a、b,c,且A=$\frac{2π}{3}$,a=2bcosC.
(1)求角B的大小;
(2)若AB边上的中线CM的长为$\sqrt{7}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+{2}^{n}}$,则f(k+1)-f(k)=$\frac{1}{k+1{+2}^{k}}$+$\frac{1}{k+2{+2}^{k}}$+…+$\frac{1}{k+1{+2}^{k+1}}$-$\frac{1}{k+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若复数z满足z=1+$\frac{1}{i}$(i为虚数单位),则复数z的共轭复数|$\overline{z}$|的模为(  )
A.0B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知i是虚数单位,若复数z满足$\frac{z}{2-i}$=i,则|z|(  )
A.2B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

同步练习册答案