精英家教网 > 高中数学 > 题目详情
2.设f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+{2}^{n}}$,则f(k+1)-f(k)=$\frac{1}{k+1{+2}^{k}}$+$\frac{1}{k+2{+2}^{k}}$+…+$\frac{1}{k+1{+2}^{k+1}}$-$\frac{1}{k+1}$.

分析 根据f(k)中的分母是从k+1到k+2k,f(k+1)中的分母是从k+2到k+1+2k+1,分析相同项与不同项,由此得出答案.

解答 解:∵f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+{2}^{n}}$,
∴f(k)=$\frac{1}{k+1}$+$\frac{1}{k+2}$+…+$\frac{1}{k{+2}^{k}}$,
f(k+1)=$\frac{1}{k+2}$+$\frac{1}{k+3}$+…+$\frac{1}{k+1{+2}^{k+1}}$,
∴f(k+1)-f(k)=$\frac{1}{k+1{+2}^{k}}$+$\frac{1}{k+2{+2}^{k}}$+…+$\frac{1}{k+1{+2}^{k+1}}$-$\frac{1}{k+1}$.
故答案为:$\frac{1}{k+1{+2}^{k}}$+$\frac{1}{k+2{+2}^{k}}$+…+$\frac{1}{k+1{+2}^{k+1}}$-$\frac{1}{k+1}$.

点评 本题主要考查了归纳思想的应用问题,也考查了分析问题解决问题的能力,解题时应注意项数的变化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设x,y满足条件$\left\{{\begin{array}{l}{2x+y≥4,\;\;}\\ \begin{array}{l}x-y≥1\\ x-2y≤2\end{array}\end{array}}\right.$且z=x+y+a(a为常数)的最小值为4,则实数a的值为(  )
A.$\frac{5}{3}$B.2C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数$\frac{1}{i-2}$-$\frac{i}{1+2i}$在复平面内所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知全集U={1,2,3,4,5},A={1,2},B={2,3,4},那么A∪(∁UB)={1,2,5}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知在Rt△ABC中,∠C=90°,根据下列条件解直角三角形:
(1)已知a=6$\sqrt{5}$,b=6$\sqrt{5}$;
(2)已知a=2,c=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.复数$\frac{1+3i}{i-1}$=(  )
A.1-2iB.1+2iC.-1+2iD.-1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,角A、B、C与边a,b,c满足asinAsinB+bcos2A=$\sqrt{2}$a.
(1)求$\frac{b}{a}$的值;
(2)若c=2,且△ABC面积为2$\sqrt{2}$,求边长a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点M是抛物线C1:y2=2px(p>0)的准线与x轴的交点,点P是抛物线C1上的动点,点A、B在y轴上,△APB的内切圆为圆C2,(x一1)2+y2=1,且|MC2|=3|OM|为坐标原点.
(I)求抛物线C1的标准方程;
(Ⅱ)求△APB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数y=$\sqrt{1-x}$+$\sqrt{x+3}$的最大值为M,最小值为m,则$\frac{m}{M}$的值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案