【题目】已知,为常数,函数.
(1)当时,求关于的不等式的解集;
(2)当时,若函数在上存在零点,求实数的取值范围;
(3)对于给定的,且,,证明:关于的方程在区间内有一个实数根.
【答案】(1)当时,不等式的解集为或;当时,不等式的解集为;当时,不等式的解集为或;(2);(3)证明见解析.
【解析】
(1)当时,,分,,三种情况讨论,求不等式的解集;
(2)当时,,其图象的对称轴为.分,,三种情况讨论,即求实数的取值范围;
(3)设.由,得.对于给定的,且,,得在区间上单调,故在区间上有且只有一个零点,即方程在区间内有一个实数根.
(1)当时,.
当,即时,由得或,
不等式的解集为或.
当,即时,恒成立,不等式的解集为.
当,即时,由得或,
不等式的解集为或.
综上,当时,不等式的解集为或;
当时,不等式的解集为;
当时,不等式的解集为或.
(2)当时,,其图象的对称轴为.
当,即时,在上单调递增,
在上存在零点,,即得.
.
当,即时,在上存在零点,
或或或,
解得或或或或.
.
当,即时,在上单调递减,
在上存在零点,,即得.
.
综上,.
实数的取值范围为.
(3)设.
当给定时,为定值.
,
.
又对于给定的,且,,
在区间上单调,即在区间上单调,
在区间上有且只有一个零点,
即方程在区间内有一个实数根.
科目:高中数学 来源: 题型:
【题目】已知三棱柱中,三个侧面均为矩形,底面为等腰直角三角形, ,点为棱的中点,点在棱上运动.
(1)求证 ;
(2)当点运动到某一位置时,恰好使二面角的平面角的余弦值为,求点到平面的距离;
(3)在(2)的条件下,试确定线段上是否存在一点,使得平面?若存在,确定其位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)试探究函数在定义域内是否存在零点,若存在,请指出有几个零点;若不存在,请说明理由;
(Ⅲ)若,且在上恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的部分图象如图所示.
(1) 求函数的解析式;
(2) 如何由函数的通过适当图象的变换得到函数的图象, 写出变换过程;
(3) 若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列的前项和为,且.数列满足,为数列的前项和.
(1)求数列的通项公式;
(2)求数列的前项和;
(3)若对任意的,不等式恒成立,求实数的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】牡丹江一中2019年将实行新课程改革,即除语、数、外三科为必考科目外,还要在理、化、生、史、地、政六科中选择三科作为选考科目.已知某生的高考志愿为北京大学环境科学专业,按照17年北大高考招生选考科目要求物、化必选,为该生安排课表(上午四节、下午四节,上午第四节和下午第一节不算相邻),现该生某天最后两节为自习课,且数学不排下午第一节,语文、外语不相邻,则该生该天课表有( )种.
A. 444B. 1776C. 1440D. 1560
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某早餐店对一款新口味的酸奶进行了一段时间试销,定价为5元/瓶.酸奶在试销售期间足量供应,每天的销售数据按照[15,25],(25,35],(35,45],(45,55]分组,得到如下频率分布直方图,以不同销量的频率估计概率.试销结束后,这款酸奶正式上市,厂家只提供整箱批发:大箱每箱50瓶,批发成本85元;小箱每箱30瓶,批发成本65元.由于酸奶保质期短,当天未卖出的只能作废.该早餐店以试销售期间的销量作为参考,决定每天仅批发一箱(计算时每个分组取中间值作为代表,比如销量为(45,55]时看作销量为50瓶).
(1)设早餐店批发一大箱时,当天这款酸奶的利润为随机变量X,批发一小箱时,当天这款酸奶的利润为随机变量Y,求X和Y的分布列;
(2)从早餐店的收益角度和利用所学的知识作为决策依据,该早餐店应每天批发一大箱还是一小箱?(必须作出一种合理的选择)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱柱ABCD-A1B1C1D1中,CD∥AB, AB⊥BC,AB=BC=2CD=2,侧棱AA1⊥平面ABCD.且点M是AB1的中点
(1)证明:CM∥平面ADD1A1;
(2)求点M到平面ADD1A1的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com