精英家教网 > 高中数学 > 题目详情
19.某车间将10名工人评价分成甲、乙两组加工某种零件,在单位时间内每个工人加工的合格零件数如茎叶图所示.已知两组工人在单位时间内加工的合格零件平均数都为20,则有(  )
A.m=3,n=8B.m=4,n=7C.m=5,n=6D.m=6,n=5

分析 根据茎叶图中的数据,利用平均数的定义,即可求出m、n的值.

解答 解:甲组工人在单位时间内加工的合格零件数的平均数为20,
即$\overline{{x}_{1}}$=$\frac{1}{5}$(17+18+20+m+20+22),
解得m=3;
乙组工人在单位时间内加工的合格零件数的平均数为10,
即$\overline{{x}_{2}}$=$\frac{1}{5}$(10+n+19+20+21+22)=20,
解得n=8.
故选:A.

点评 本题考查了利用茎叶图求平均数的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.下列函数中,在(-∞,0)上为减函数的是(  )
A.$y={x^{\frac{2016}{2015}}}$B.$y={x^{\frac{2013}{2015}}}$C.$y={x^{-\frac{2014}{2015}}}$D.$y={x^{-\frac{2015}{2016}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在三棱锥E-ABC中,平面EAB⊥平面ABC,三角形EAB为等边三角形,AC⊥BC且AC=BC=$\sqrt{2}$,O,M分别为AB、EA中点.
(1)求证:EB∥平面MOC;
(2)求证:平面MOC⊥平面EAB;
(3)求三棱锥E-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)经过点$({1,\frac{{\sqrt{2}}}{2}})$,离心率为$\frac{{\sqrt{2}}}{2}$,过椭圆C的右焦点F作垂直于x轴的直线与椭圆C相交于A,B两点,直线l:y=mx+n与椭圆C交于C,D两点,与线段AB相交于一点(与A,B不重合).
(Ⅰ)求椭圆C的方程;
(Ⅱ)当直线l与圆x2+y2=1相切时,四边形ACBD的面积是否有最大值?若有,求出最大值及对应直线l的方程,若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设命题p:有的三角形是等边三角形;命题q:每一个四边形的四顶点共圆.则下列复合命题是真命题的是(  )
A.p∧¬qB.¬p∧qC.p∧qD.¬p∨q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知:平面上两个不相等向量,$\overrightarrow{m}$=(3,4),$\overrightarrow{n}$=(x+1,2x)
(1)若($\overrightarrow{m}$+$\overrightarrow{n}$)⊥($\overrightarrow{m}$-$\overrightarrow{n}$),求实数x;
(2)若$\overrightarrow{m}$•$\overrightarrow{n}$=14,求$\overrightarrow{m}$与$\overrightarrow{n}$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知三棱柱ABC-A1B1C1的顶点都在球O的表面上,且侧棱垂直于底面ABC,若AC=4,∠ABC=30°,AA1=6,则球O的体积为$\frac{500π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.将八进制53转化为二进制的数结果是:101011(2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数y=x3+px2+qx,其图象与x轴切于非原点的一点,且该函数的极小值是-4,那么切点坐标为(-3,0).

查看答案和解析>>

同步练习册答案