精英家教网 > 高中数学 > 题目详情
10.在区间[0,1]上随机取一个数x,则满足不等式“3x-1>0”的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.1D.2

分析 本题利用几何概型求概率.先不等式0≤x≤1且3x-1>0,再利用解得的区间长度与区间[0,1]上的长度求比值即得.

解答 解:利用几何概型,其测度为线段的长度.
∵0≤x≤1且3x-1>0,
∴$\frac{1}{3}$<x≤1,
∴在区间[0,1]上随机取一个数x,则满足不等式“3x-1>0”的概率为$\frac{1-\frac{1}{3}}{1-0}$=$\frac{2}{3}$,
故选A.

点评 本题主要考查了几何概型,简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知命题“?x∈R,3x2+ax+$\frac{1}{2}$a≤0”是假命题,则实数a的取值范围是(0,6).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a,b,c都是正数,
(1)若a+c=1,试比较a3+a2c+ab2+b2c与a2b+abc的大小;
(2)若a2+b2+c2=1,求证:$\frac{1}{{a}^{2}}+\frac{1}{{b}^{2}}+\frac{1}{{c}^{2}}$-$\frac{2({a}^{3}+{b}^{3}+{c}^{3})}{abc}$≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数$f(x)=\left\{{\begin{array}{l}{x\;({x≥0})}\\{{x^2}\;({x<0})}\end{array}}\right.$,则f (f(-3)) 的值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a=log32,b=log45,c=log30.3,则a,b,c的大小关系是c<a<b(用“<”连接)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设f(x)=$\left\{\begin{array}{l}{e^x},x<2\\{log_3}(x-1),x≥2.\end{array}$,则f(f(f(10)))的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.直线l过点P(0,2)且与直线2x-y=0平行,则直线l在x轴上的截距为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知b-2n3m(b>0,m,n∈N+),则b=(  )
A.π${\;}^{\frac{3m}{2n}}$(m,n∈N+B.π${\;}^{-\frac{3m}{2n}}$(m,n∈N+C.π${\;}^{\frac{2n}{3m}}$(m,n∈N+D.π${\;}^{-\frac{2n}{3m}}$(m,n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若方程x2-2x+m=0与-2x2+4x+n=0的4个不同的根可以组成一个等差数列,且首项为$\frac{1}{4}$,则mn的值为-$\frac{105}{128}$.

查看答案和解析>>

同步练习册答案