精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\frac{1}{2}$x2+2ax,g(x)=3a2lnx+b,设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同,则a∈(0,+∞)时,实数b的最大值是$\frac{3}{2}{e}^{\frac{2}{3}}$.

分析 设公共点(x0,y0),根据题意得到,f(x0)=g(x0),f′(x0)=g′(x0),解出b关于a的函数关系式,然后利用导数研究b关于a的函数的单调性,从而求出b的最大值.

解答 解:(I)设y=f(x)与y=g(x)(x>0)在公共点(x0,y0)处的切线相同.
f′(x)=x+2a,g′(x)=$\frac{3{a}^{2}}{x}$.
由题意知f(x0)=g(x0),f′(x0)=g′(x0
即$\left\{\begin{array}{l}{\frac{1}{2}{{x}_{0}}^{2}+2a{x}_{0}=3{a}^{2}ln{x}_{0}+b}\\{{x}_{0}+2a=\frac{3{a}^{2}}{{x}_{0}}}\end{array}\right.$,
解得x0=a或x0=-3a(舍去),
b(a)=$\frac{5{a}^{2}}{2}$-3a2lna(a>0)
b'(a)=5a-6alna-3a=2a(1-3lna)
b'(a)>0?$\left\{\begin{array}{l}{a>0}\\{1-3lna>0}\end{array}\right.$?0<a<${e}^{\frac{1}{3}}$
b'(a)<0?$\left\{\begin{array}{l}{a>0}\\{1-3lna<0}\end{array}\right.$?a>${e}^{\frac{1}{3}}$
可见b(a)max=b(${e}^{\frac{1}{3}}$)=$\frac{3}{2}{e}^{\frac{2}{3}}$.
故答案为:$\frac{3}{2}{e}^{\frac{2}{3}}$.

点评 本题主要考查了利用导数研究曲线上某点切线方程和恒成立问题,以及利用导数研究函数的单调性和最值,同时考查了转化的思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.△ABC的内角A,B,C的对边分别为a,b,c,已知acosBcosC+bcosAcosC=$\frac{c}{2}$.
(1)求角C;
(2)若c=$\sqrt{7}$,a+b=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在正方体ABCD-A1B1C1D1中,E,F分别是棱A1B1,B1C1的中点,O是AC与BD的交点,面OEF与面BCC1B1相交于m,面OD1E与面BCC1B1相交于n,则直线m,n的夹角为(  )
A.0B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.(x2+3x+2)5的展开式中x的系数是240.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x|x-a|+2x.
(1)当a=3时,方程f(x)=m的解的个数;
(2)对任意x∈[1,2]时,函数f(x)的图象恒在函数g(x)=2x+1图象的下方,求a的取值范围;
(3)f(x)在(-4,2)上单调递增,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.小明爱好玩飞镖,现有图形构成如图所示的两个边长为2的正方形ABCD和OPQR,如果O点正好是正方形ABCD的中心,而正方形OPQR可以绕点O旋转,则小明射中阴影部分的概率是$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)是定义域在R的可导函数,满足:f(x)<f′(x)且f(0)=2,则$\frac{f(x)}{{e}^{x}}$>2的解集为(  )
A.(-∞,0)B.(0,+∞)C.(-∞,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=(x-a)2+4ln(x+1)的图象在点(1,f(1))处的切线与y轴垂直.
(1)求实数a的值;             
(2)求出f(x)的所有极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知{an}(n=1,2,3,…)是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项an+1,an+2,…的最小值记为Bn,dn=An-Bn
(1)若{an}满足a1=3,当n≥2时,${a_n}={3^n}-1$,写出d1,d2,d3的值;
(2)设d是非负整数,证明:dn=-d的充分必要条件为{an}是公差为d的等差数列;
(3)若{an}的通项公式为${a_n}={2^n}$,求数列$\left\{{-\frac{n^2}{d_n}}\right\}$的前n项和Sn

查看答案和解析>>

同步练习册答案