精英家教网 > 高中数学 > 题目详情
设x,y满足
x-y≥-1
x+y≥1
3x-y≤3
,则z=2x+3y的最大值是
 
考点:简单线性规划
专题:数形结合,不等式的解法及应用
分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求得最优解的坐标,代入目标函数得答案.
解答: 解:由约束条件
x-y≥-1
x+y≥1
3x-y≤3
作出可行域如图,

联立
x-y=-1
3x-y=3
,解得B(2,3),
化目标函数z=2x+3y为y=-
2
3
x+
z
3

由图可知,当直线y=-
2
3
x+
z
3
过点B(2,3)时z最大,等于2×2+3×3=13.
故答案为:13.
点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设i的虚数单位,复数
1+bi
1+i
为纯虚数,则实数b的值为(  )
A、0B、1C、-1D、±1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,点A(3,3)、B(2,-2)、C(-2,1),求∠A平分线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若O为△ABC所在平面内任一点,且满足(
OB
-
OC
)•(
OB
+
OC
-2
OA
)=0,则△ABC一定是(  )
A、正三角形
B、等腰三角形
C、直角三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(2,4),
b
=(-1,2).若
c
=
a
-(
a
b
b
,则|
c
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系中,CA⊥x轴于点A(1,0),DB⊥x轴于点B(3,0),直线CD与x轴、y轴分别交于点F、E,S四边形ABCD=4.
(1)若直线CD的解析式为y=kx+3,求k的值;
(2)在(1)条件下,试探索在x轴正半轴上存在几个点P,使△EPF为等腰三角形,并求出这些点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2x-
3
sinxcosx+1.
(1)求函数f(x)的单调递增区间;
(2)若f(θ+
π
12
)=
5
6
,θ∈(
π
3
3
),求sin(2θ+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某集团为了获得更大的利润,每年要投入一定的资金用于广告促销.经调查,每年投入广告费t(100万元)可增加销售额约为-t2+5t(100万元)(0≤t≤3).
(1)若该集团将当年的广告费控制在300万元以内,则应投入多少广告费,才能使集团由广告费而产生的收益最大?
(2)现在该集团准备投入300万元,分别用于广告促销和技术改造.经预算,每投入技术改造费x(100万元),可增加的销售额约为-
1
3
x3+x2+3x(100万元).请设计一个资金分配方案,使该集团由这两项共同产生的收益最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

若三条线段的长分别为3,6,7,则用这三条线段围成的三角形的形状是
 

查看答案和解析>>

同步练习册答案