精英家教网 > 高中数学 > 题目详情
15.已知数列{an}的前n项和Sn满足2Sn=3an-$\frac{1}{2}$,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=1+2log32an,求证:$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}<\frac{1}{2}$.

分析 (Ⅰ)由题意结合an和Sn的关系可得数列{an}为等比数列,由等比数列的通项公式可得;
(Ⅱ)由(Ⅰ)和对数的运算可得bn=2n-1,由裂项相消法求和可证不等式.

解答 解:(Ⅰ)由题意可得数列{an}的前n项和Sn满足2Sn=3an-$\frac{1}{2}$,
当n=1时,$2{S_1}=3{a_1}-\frac{1}{2}$,即$2{a_1}=3{a_1}-\frac{1}{2}$,解得${a_1}=\frac{1}{2}$;
当n≥2时,由$2{S_n}=3{a_n}-\frac{1}{2}$可得$2{S_{n-1}}=3{a_{n-1}}-\frac{1}{2}$,
两式相减可得2an=3an-3an-1,变形可得$\frac{a_n}{{{a_{n-1}}}}=3$,
∴数列{an}是以${a_1}=\frac{1}{2}$为首项,3为公比的等比数列,
由等比数列的通项公式可得${a_n}=\frac{1}{2}•{3^{n-1}}$;
(Ⅱ)证明:∵bn=1+2log32an=2n-1,
∴$\frac{1}{{{b_n}{b_{n+1}}}}=\frac{1}{{({2n-1})({2n+1})}}=\frac{1}{2}({\frac{1}{2n-1}-\frac{1}{2n+1}})$,
∴$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}=\frac{1}{2}({1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1}})$
=$\frac{1}{2}({1-\frac{1}{2n+1}})<\frac{1}{2}$

点评 本题考查数列的递推公式和裂项相消法求和,涉及等比数列的判定和通项公式,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(2$\sqrt{3}$,2),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,AB是圆O的直径,C,F为圆O上的点,CA是∠BAF的角平分线,CD与圆O切于点C,且交AF的延长线于点D,CM⊥AB,垂足为点M.
(1)求证:DF=BM;
(2)若圆O的半径为1,∠BAC=60°,试求线段CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知椭圆C的中心在原点O,左焦点为F1(-1,0),左顶点为A,且F1为AO的中点.
(1)求椭圆C的方程;
(2)若椭圆C1方程为:$\frac{x^2}{m^2}+\frac{y^2}{n^2}=1(m>n>0)$,椭圆C2方程为:$\frac{x^2}{m^2}+\frac{y^2}{n^2}=λ(λ>0,且λ≠1)$,则称椭圆C2是椭圆C1的λ倍相似椭圆.已知C2是椭圆C的3倍相似椭圆,若椭圆C的任意一条切线l交椭圆C2于两点M,N,试求弦长|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;\;({a>b>0})$的离心率为$\frac{{\sqrt{2}}}{2}$,左、右焦点分别为F1、F2,点$P(2,\sqrt{3})$,且F2在线段PF1的中垂线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点A(2,0)且斜率为k的直线l与椭圆C交于D、E两点,点F2为椭圆的右焦点,求证:直线DF2与直线EF2的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过点A(2,0),离心率$e=\frac{1}{2}$,斜率为k(0<k≤1)直线l过点M(0,2),与椭圆C交于G,H两点(G在M,H之间),与x轴交于点B.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)P为x轴上不同于点B的一点,Q为线段GH的中点,设△HPG的面积为S1,△BPQ面积为S2,求$\frac{S_1}{S_2}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过A($\sqrt{2}$,0),离心率为$\frac{\sqrt{2}}{2}$,O为坐标原点.
(1)求椭圆C的方程;
(2)设P,Q,R椭圆上三点,OQ与PR交于M点,且$\overrightarrow{OQ}$=3$\overrightarrow{OM}$,当PR中点恰为点M时,判断△OPR的面积是否为常数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知A,B分别为椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右顶点,不同两点P,Q在椭圆C上,且关于x轴对称,设直线AP,BQ的斜率分别为m,n,则当$\frac{2b}{a}+\frac{a}{b}+\frac{1}{2mn}$+ln|m|+ln|n|取最小值时,椭圆C的离心率为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.复数z1=sin2x+i•cos2x,z2=sin2x+i•cosx(其中x∈R,i为虚数单位),在复平面上,复数z1、z2能否表示同一个点:若能,指出该点表示的复数;若不能,说明理由.

查看答案和解析>>

同步练习册答案