精英家教网 > 高中数学 > 题目详情
5.复数z1=sin2x+i•cos2x,z2=sin2x+i•cosx(其中x∈R,i为虚数单位),在复平面上,复数z1、z2能否表示同一个点:若能,指出该点表示的复数;若不能,说明理由.

分析 由题意得到关于x的三角方程,求解三角方程得到x值,即可求得复数z1、z2的值.

解答 解:复数z1=sin2x+i•cos2x,z2=sin2x+i•cosx,
若复数z1、z2表示同一个点,则:
$\left\{\begin{array}{l}{si{n}^{2}x=si{n}^{2}x}\\{cos2x=cosx}\end{array}\right.$,由cos2x=cosx,得2cos2x-cosx-1=0,
解得cosx=1或cosx=$-\frac{1}{2}$,
当cosx=1时,x=2kπ,k∈Z,此时cos2x=1,sin2x=0,z1=z2=i;
当cosx=-$\frac{1}{2}$时,x=2kπ$±\frac{2}{3}π$,此时cos2x=$-\frac{1}{2}$,$si{n}^{2}x=\frac{3}{4}$,${z}_{1}={z}_{2}=\frac{3}{4}-\frac{1}{2}i$.
∴在复平面上,复数z1、z2能表示同一个点,该点表示的复数为i或$\frac{3}{4}-\frac{1}{2}i$.

点评 本题考查复数的代数表示法及其几何意义,考查了三角函数值的求法,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和Sn满足2Sn=3an-$\frac{1}{2}$,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=1+2log32an,求证:$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,直线l:y=$\frac{1}{2}$x交椭圆于A、B两点,点F关于直线l的对称点E恰好在椭圆上,且|AE|+|BF|=6,则椭圆的短轴长为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在$\frac{1}{2},{2^{\frac{1}{3}}}.{log_3}$2这三个数中,最小的数是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.将函数y=f(x)的图象向左平移1个单位,再纵坐标不变,横坐标伸长到原来的$\frac{π}{3}$倍,然后再向上平移1个单位,得到函数y=$\sqrt{3}$sinx的图象.
(1)求y=f(x)的最小正周期和单调递增区间;
(2)若h(x)=-$\frac{{2\sqrt{3}}}{3}$f(x)+2-$\frac{{2\sqrt{3}}}{3}$+m的定义域为[$\frac{9}{2}$,$\frac{15}{2}$],值域为[{2,5}],求m的值.
(3)若函数y=g(x)与y=f(x)的图象关于直线x=2对称,求当x∈[0,1]时,有t2-2t-3≤g(x)≤-$\frac{1}{2}({t^2}-t-3)$恒成立,求t的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\frac{3x+1}{x+a}$(a$≠\frac{1}{3}$)图象与它的反函数图象重合,则实数a=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若复数z=sinθ-$\frac{3}{5}$+(cosθ-$\frac{4}{5}$)i是纯虚数,则tanθ的值为(  )
A.$\frac{3}{4}$B.-$\frac{3}{4}$C.$\frac{4}{3}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.计算:sin15°=$\frac{\sqrt{6}-\sqrt{2}}{4}$;$\frac{1+tan15°}{1-tan15°}$=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知各项都为正数的等比数列{an},公比q=2,若存在两项am,an,使得$\sqrt{{a}_{m}{a}_{n}}$=2a1,则$\frac{1}{n}+\frac{4}{m}$的最小值为$\frac{7}{3}$.

查看答案和解析>>

同步练习册答案