精英家教网 > 高中数学 > 题目详情
已知数列{an}为等比数列,其前n项和为Sn,已知a3+a5=-
5
32
,且对于任意的n∈N,有S1,S3,S2成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)已知bn=n(n∈N+),求Tn=
.
b1
a1
 
.
+
.
b2
a2
 
.
+
.
b3
a3
 
.
+…+
.
bn
an
 
.
考点:数列的求和,等比数列的前n项和
专题:等差数列与等比数列
分析:(Ⅰ)由已知得
a1q2+a1q4=-
5
32
a1(1-q3)
1-q
=a1+a1+a1q
,由此求出首项和公比,从而能求出an=(-
1
2
n
(Ⅱ)由bn=n,得|
bn
an
|=
n
2n
,由此利用错位相减法能求出Tn
解答: 解:(Ⅰ)由已知得
a1q2+a1q4=-
5
32
a1(1-q3)
1-q
=a1+a1+a1q

解得a1=-
1
2
,q=-
1
2

∴an=(-
1
2
n
(Ⅱ)∵bn=n,∴|
bn
an
|=
n
2n

∵Tn=
.
b1
a1
 
.
+
.
b2
a2
 
.
+
.
b3
a3
 
.
+…+
.
bn
an
 
.

Tn=
1
2
+
2
22
+
3
23
+…+
n
2n
,①
1
2
Tn
=
1
22
+
2
23
+
3
24
+…+
n
2n+1
,②
①-②,得:
1
2
Tn
=
1
2
+
1
22
+
1
23
+…+
1
2n
-
n
2n+1

=
1
2
(1-
1
2n
)
1-
1
2
-
n
2n+1

=1-
1
2n
-
n
2n+1

∴Tn=2-
n+2
2n
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某城市持续性的雾霾天气严重威胁着人们的身体健康,汽车的尾气排放是造成雾霾天气的重要因素之一,为此该城市实施了机动车尾号限行政策.现有家报社想调查了解该市区公民对“车辆限行”的态度,并在该城市里随机抽查了50人,将调查情况进行整理后制成下表:
年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]
频  数24201455
支持的人数13151144
(1)请估计该市公民对“车辆限行”的支持率(答案用百分比表示);
(2)若从年龄在[15,25),[25,35)的被调查者中采用分层抽样选取3人进行跟踪调查,求选取的3人中有2人不支持“车辆限行”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(函数的应用)某厂有许多形状为直角梯形的铁皮边角料(如图),为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图阴影部分)备用,则截取的矩形面积的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn(n∈N*),a3=5,S10=100.
(1)求数列{an}的通项公式;
(2)设bn=2 an+2n求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是正项数列,a1=1,且点(
an
,an+1)(n∈N*)在函数y=x2+1的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=1+
1
anan+1
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1,a3,a5,…成等差数列{a2n-1}(n∈N*),a2,a4,a6,…成比数列{a2n}(n∈N*),且a1=1,a2=2,a2,a3,a4,a5成等差数列,数列{an}的前n项和为Sn
(1)求Sn
(2)设bn=
S2n
2n
,求数列{bn}的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB、PC的中点.
(1)求证:
EF
AP
AD
共面;
(2)求证:EF⊥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,2,-2),
b
=(0,2,4),则
a
b
夹角的余弦值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

与函数y=x为相同函数的是(  )
A、y=
x2
B、y=
x2
x
C、y=elnx
D、y=log22x

查看答案和解析>>

同步练习册答案