精英家教网 > 高中数学 > 题目详情
17.设a1=1,Sn为数列{an}的前n项和,且Sn+1-Sn+2Sn+1Sn=0,则数列{an}的通项公式为 an=$\left\{\begin{array}{l}{1,n=1}\\{-\frac{2}{4{n}^{2}-8n+3},n≥2}\end{array}\right.$.

分析 先根据递推公式得到数列{$\frac{1}{{S}_{n}}$}是以1为首项,以2为公差的等差数列,求出Sn=$\frac{1}{2n-1}$,由此得到Sn-1=$\frac{1}{2n-3}$,故an=$\frac{1}{2n-1}$-$\frac{1}{2n-3}$,化简整理即可.

解答 解:∵Sn+1-Sn+2Sn+1Sn=0,
∴$\frac{1}{{S}_{n+1}}$-$\frac{1}{{S}_{n}}$=2,
∵a1=1,
∴$\frac{1}{{S}_{1}}$=$\frac{1}{{a}_{1}}$=1,
∴数列{$\frac{1}{{S}_{n}}$}是以1为首项,以2为公差的等差数列,
∴$\frac{1}{{S}_{n}}$=1+2(n-1)=2n-1,
∴Sn=$\frac{1}{2n-1}$,
∴Sn-1=$\frac{1}{2n-3}$,
∴an=$\frac{1}{2n-1}$-$\frac{1}{2n-3}$=$\frac{-2}{(2n-1)(2n-3)}$=-$\frac{2}{4{n}^{2}-8n+3}$,
当n=1时,不成立,
∴an=$\left\{\begin{array}{l}{1,n=1}\\{-\frac{2}{4{n}^{2}-8n+3},n≥2}\end{array}\right.$
故答案为:$\left\{\begin{array}{l}{1,n=1}\\{-\frac{2}{4{n}^{2}-8n+3},n≥2}\end{array}\right.$.

点评 本题考查了数列的通项公式的求法和等差数列的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.C${\;}_{3}^{0}$+C${\;}_{4}^{1}$+C${\;}_{5}^{2}$+…+C${\;}_{21}^{18}$的值等于7315.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.化简$\frac{\sqrt{1-2sin39°cos39°}}{sin39°-cos39°}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.甲、乙两船同时从B点出发,甲船以每小时10($\sqrt{3}$-1)km的速度向正东航行,乙船以每小时20km的速度沿南偏东60°的方向航行,1小时后甲、乙两船分别到达A、C两点.
(Ⅰ)求A、C两点间的距离;
(Ⅱ)求此时A点观察C点的方位角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.F1,F2分别为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的左、右焦点,点P在双曲线上,满足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,若△PF1F2的内切圆半径与外接圆半径之比为$\frac{\sqrt{3}-1}{2}$,该曲线的离心率为$\sqrt{3}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.当a的取值范围为(-1,3)时,方程|x2-4|=a+1有四个相异实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,角A,B,C的对边分别为a,b,c,且(2a-c)cosB=bcosC,b=2
(Ⅰ)求角B的大小
(Ⅱ)求AB+BC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.等比数列{an}的通项为an=2•3n-1,现把每相邻两项之间都插入两个数,构成一个新的等比数列{bn},那么162是新数列{bn}的(  )
A.第5项B.第12项C.第13项D.第6项

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=\sqrt{2},|{\overrightarrow b}|=2,(\overrightarrow a-\overrightarrow b)⊥\overrightarrow a$,则$\overrightarrow a,\overrightarrow b$的夹角是$\frac{π}{4}$.

查看答案和解析>>

同步练习册答案