精英家教网 > 高中数学 > 题目详情
求证:(1)a2+b2+c2≥ab+ac+bc;  
(2)
6
+
7
>2
2
+
5
考点:不等式的证明
专题:证明题,分析法,综合法
分析:(1)利用基本不等式,即可证得a2+b2+c2≥ab+bc+ac;
(2)寻找使不等式成立的充分条件即可.
解答: 证明:(1)∵a2+b2≥2ab,a2+c2≥2ac,b2+c2≥2bc,
∴a2+b2+c2≥ab+bc+ac;
(2)要证明
6
+
7
>2
2
+
5

只要证明(
6
+
7
2>(2
2
+
5
2
只要证明2
42
>2
40

显然成立,
6
+
7
>2
2
+
5
点评:本题考查均值不等式的应用,考查不等式的证明方法,用分析法证明不等式,关键是寻找使不等式成立的充分条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求关于x的方程7x2-(k+13)x+k2-k-2=0满足0<x1<1<x2<2的两个实数根的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,P(
a
4
,t)为椭圆C上第一象限的点,过点P作两互相垂直的直线L1、L2,L1经过椭圆C左顶点A,L2经过右焦点F2
(1)求椭圆离心率;
(2)将直线L1绕点P逆时针旋转30°后,直线L1通过左焦点F1,且与椭圆交于B点,此时△PF2B的面积为
35
3
11
,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设向量
a
b
不共线,已知 
AB
=2
a
+k
b
BC
=
a
+
b
CD
=
a
-2
b
,且A、B、D三点共线,求实数k的值.
(2)已知
a
=2
e1
-3
e2
b
=2
e1
+3
e2
,其中
e1
e2
不共线,向量
c
=2
e1
-9
e2
,问是否存在这样的实数λ,μ,使
d
a
b
c
共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}为等比数列,Tn=a1+2a2+…+(n-1)an-1+nan,已知T1=1,T2=5.
(1)求数列{an}的首项和公比;
(2)求数列{Tn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1-
x-1
ex
,g(x)=x-lnx.
(1)证明:g(x)≥1;
(2)证明:(x-lnx)f(x)>1-
1
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)是周期为2的偶函数,当x∈[2,3]时,f(x)=x-1.
(1)求当x∈[1,2]时,f(x)的解析式;
(2)在y=f(x)的图象上有两点A、B,它们的纵坐标相等,横坐标都在区间[1,3]上,定点C的坐标为(0,a)(其中2<a<3),求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
3
sin2x+cos(2x-
π
3
)+cos(2x+
π
3
).
(1)求f(x)的单调增区间和对称轴;
(2)若|
a
|=1,|
b
|=2,
3
≤|
a
+
b
|≤
7
,设
a
b
的夹角为x,求f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

六个数5,7,7,8,10,11的方差是
 

查看答案和解析>>

同步练习册答案