精英家教网 > 高中数学 > 题目详情
如图,四边形ABCD是边长为2的正方形,△ABE为等腰三角形,AE=BE,平面ABCD⊥平面ABE,动点F在CE上,无论点F运动到何处时,总有BF⊥AE.
(Ⅰ)求证:平面ADE⊥平面BCE;
(Ⅱ)求三校锥的D-ACE体积.
考点:平面与平面垂直的判定,棱柱、棱锥、棱台的体积
专题:空间位置关系与距离
分析:( I)根据点F运动到何处时,总有BF⊥AE,推断出AE⊥平面BCE,进而根据面面垂直的判定定理推断出平面ADE⊥平面BCE;
( II)作AB的中点G,连结EG,由( I)知AE⊥平面BCE,根据线面垂直的性质可知AE⊥BE,AE=BE,进而根据EG⊥AB,求得EG,根据面面垂直的性质可推断出GE⊥平面ABCD最后根据VD-ACE=VE-ADC求得三校锥的D-ACE体积.
解答: ( I)证明:∵点F运动到何处时,总有BF⊥AE,
∴AE⊥平面BCE,
∵AE?平面ADE,
∴平面ADE⊥平面BCE;
( II)作AB的中点G,连结EG,
由( I)知AE⊥平面BCE,
∵BE?平面BCE,
∴AE⊥BE,
∵AE=BE,
∴EG⊥AB,EG=
1
2
AB=1
∵平面ABCD⊥平面ABE,EG?平面ABE,平面ABCD∩平面ABE=AB,
∴GE⊥平面ABCD,
∴VD-ACE=VE-ADC=
1
3
•AE•S△ADC=
1
3
×1×
1
2
×2×2=
2
3
点评:本题主要考查了线面垂直,面面垂直的判定定理的应用.判断面面垂直的重要一步就是先判断出线面垂直.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等比数列{an}满足a3-a1=3,a1+a2=3.
(Ⅰ)求数列{an}的前15项的和S15
(Ⅱ)若等差数列{bn}满足b1=a2,b3=a2+a3,求数列{bn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD,PA⊥平面ABCD,PA=AB=BC=
1
2
AD,四边形ABCD是直角梯形中,∠ABC=∠BAD=90°.
(1)求证:CD⊥平面PAC;
(2)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学参加科普知识竞赛需回答3个问题,竞赛规则规定:答对第1、2、3个问题分别得100分、100分、200分,答错得零分.假设这名同学答对第1、2、3个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.
(1)求这名同学得200分的概率;
(2)如果规定至少得300分则算通过,求某同学能通过竞赛的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的图象的一部分如图,已知函数与x轴交于点P(-2,0)和(6,0),点M,N分别是最高点和最低点,且∠MPN=
π
2

(Ⅰ)求函数f(x)表达式;
(Ⅱ)若f(x0+
10
3
)=
3
,求sin(
π
4
x0-
π
6
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA⊥PD,底面ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一点.
(Ⅰ)若AD=3OD,求证:CD∥平面PBO;
(Ⅱ)求证:平面PAB⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:ax-y=0在矩阵A=[
01
12
]对应的变换作用下得到直线l′,若直线l′过点(1,1),求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1(n≥1).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)在数列{bn}中,bn=an•log3an,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面上三点A、B、C满足|
AB
|=1,|
BC
|=1,|
CA
|=
2
,则
AB
BC
+
BC
CA
+
CA
AB
=
 

查看答案和解析>>

同步练习册答案