【题目】已知椭圆C:()的短轴长为2,离心率为
(1)求椭圆C的方程
(2)若过点M(2,0)的引斜率为的直线与椭圆C相交于两点GH,设P为椭圆C上一点,且满足(O为坐标原点),当时,求实数的取值范围?
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为,直线l的方程为:
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线l与椭圆相交于、两点
①若线段中点的横坐标为,求斜率的值;
②已知点,求证:为定值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“悦跑圈”是一款基于社交型的跑步应用,用户通过该平台可查看自己某时间段的运动情况,某人根据年月至年月期间每月跑步的里程(单位:十公里)的数据绘制了下面的折线图,根据该折线图,下 列结论正确的是( )
A.月跑步里程逐月增加
B.月跑步里程最大值出现在月
C.月跑步里程的中位数为月份对应的里程数
D.月至月的月跑步里程相对于月至月波动性更小,变化比较平稳
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义,,…,的“倒平均数”为.
(1)若数列前项的“倒平均数”为,求的通项公式;
(2)设数列满足:当为奇数时,,当为偶数时,.若为前项的倒平均数,求;
(3)设函数,对(1)中的数列,是否存在实数,使得当时,对任意恒成立?若存在,求出最大的实数;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元,适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图:
经济损失4000元以下 | 经济损失4000元以上 | 合计 | |
捐款超过500元 | 30 | ||
捐款低于500元 | 6 | ||
合计 |
(1)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如上表,在表格空白处填写正确数字,并说明是否有以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?
(2)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,李师傅比张师傅早到小区的天数的分布列和数学期望.
附:临界值表
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
参考公式:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,为左焦点,为上顶点,为右顶点,若,抛物线的顶点在坐标原点,焦点为.
(1)求的标准方程;
(2)是否存在过点的直线,与和交点分别是和,使得?如果存在,求出直线的方程;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于集合A,定义了一种运算“”,使得集合A中的元素间满足条件:如果存在元素,使得对任意,都有,则称元素e是集合A对运算“”的单位元素.例如:,运算“”为普通乘法;存在,使得对任意,都有,所以元素1是集合R对普通乘法的单位元素.下面给出三个集合及相应的运算“”:
①,运算“”为普通减法;
②,运算“”为矩阵加法;
③(其中M是任意非空集合),运算“”为求两个集合的交集.
其中对运算“”有单位元素的集合序号为( )
A. ①②B. ①③C. ①②③D. ②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,焦点在轴上,离心率等于,它的一个顶点恰好在抛物线的准线上.
求椭圆的标准方程;
点,在椭圆上,是椭圆上位于直线两侧的动点当运动时,满足,试问直线的斜率是否为定值,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com