精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C:()的短轴长为2,离心率为

(1)求椭圆C的方程

(2)若过点M(2,0)的引斜率为的直线与椭圆C相交于两点GH,设P为椭圆C上一点,且满足(O为坐标原点),当时,求实数的取值范围?

【答案】1;(2.

【解析】

1)根据椭圆离心率、短轴长以及列方程组,解方程求得,由此求得椭圆方程.

2)设出直线的方程,联立直线的方程和椭圆方程,写出判别式和韦达定理.计算出弦长,由,求得的一个取值范围.利用求得关于的表达式,根据的取值范围,求得的取值范围.

1)由于椭圆的短轴长为,离心率为,所以,解得,所以椭圆的方程为.

2)设,设直线的方程为,由消去并化简得,化简得..

,由弦长公式得,两边平方并化简得,解得.

所以.

,则由,所以,根据,得.所以,代入椭圆方程并化简得.由于,所以,所以,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为,直线l的方程为:

)求椭圆的方程;

)已知直线l与椭圆相交于两点

若线段中点的横坐标为,求斜率的值;

已知点,求证:为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】悦跑圈是一款基于社交型的跑步应用,用户通过该平台可查看自己某时间段的运动情况,某人根据月至月期间每月跑步的里程(单位:十公里)的数据绘制了下面的折线图,根据该折线图,下 列结论正确的是(

A.月跑步里程逐月增加

B.月跑步里程最大值出现在

C.月跑步里程的中位数为月份对应的里程数

D.月至月的月跑步里程相对于月至月波动性更小,变化比较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义倒平均数.

1)若数列项的倒平均数,求的通项公式;

2)设数列满足:当为奇数时,,当为偶数时,.项的倒平均数,求

3)设函数,对(1)中的数列,是否存在实数,使得当时,对任意恒成立?若存在,求出最大的实数;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元,适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图:

经济损失4000元以下

经济损失4000元以上

合计

捐款超过500元

30

捐款低于500元

6

合计

(1)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如上表,在表格空白处填写正确数字,并说明是否有以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?

(2)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,李师傅比张师傅早到小区的天数的分布列和数学期望.

附:临界值表

2.072

2.706

3.841

5.024

6.635

7.879

10.828

0.15

0.10

0.05

0.025

0.010

0.005

0.001

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为左焦点,为上顶点,为右顶点,若,抛物线的顶点在坐标原点,焦点为.

(1)求的标准方程;

(2)是否存在过点的直线,与交点分别是,使得?如果存在,求出直线的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于集合A,定义了一种运算“”,使得集合A中的元素间满足条件:如果存在元素,使得对任意,都有,则称元素e是集合A对运算“”的单位元素.例如:,运算“”为普通乘法;存在,使得对任意,都有,所以元素1是集合R对普通乘法的单位元素.下面给出三个集合及相应的运算“”:

,运算“”为普通减法;

,运算“”为矩阵加法;

(其中M是任意非空集合),运算“”为求两个集合的交集.

其中对运算“”有单位元素的集合序号为(  )

A. ①②B. ①③C. ①②③D. ②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线是正常数)上有两点,焦点

甲:

乙:

丙:

丁:.

以上是“直线经过焦点”的充要条件有几个(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,离心率等于,它的一个顶点恰好在抛物线的准线上.

求椭圆的标准方程;

在椭圆上,是椭圆上位于直线两侧的动点运动时,满足,试问直线的斜率是否为定值,请说明理由.

查看答案和解析>>

同步练习册答案