分析 (1)由数列递推式求出数列首项,并说明数列{an}是公差为$\sqrt{3}$的等差数列,则其通项公式可求;
(2)直接利用累加法求数列的通项公式.
解答 解:(1)数列{an}中,由a2=2$\sqrt{3}$,an=an-1+$\sqrt{3}$(n≥2),
可得${a}_{1}=\sqrt{3}$,且数列{an}是公差为$\sqrt{3}$的等差数列,
∴${a}_{n}=\sqrt{3}+\sqrt{3}(n-1)$=$\sqrt{3}n$;
(2)数列{an}中,由a1=1,an+1=an-3n,得
a2=a1-3×1,
a3=a2-3×2,
a4=a3-3×3,
…
an=an-1-3(n-1).
累加得:an=a1-3[1+2+3+…+(n-1)]=$1-3×\frac{n(n-1)}{2}=\frac{2-3{n}^{2}+3n}{2}$.
点评 本题考查数列递推式,考查了等差关系的确定,训练了累加法求数列的通项公式,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,2] | B. | [$-\frac{1}{2}$,$\frac{3}{2}$] | C. | [$\frac{1}{2}$,$\frac{5}{2}$] | D. | [$\frac{1}{2}$,$\frac{3}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com