精英家教网 > 高中数学 > 题目详情

已知f(x)=,则函数f(x)的零点个数为(  )

A.1 B.2 C.3 D.4

 

B

【解析】当x>0时,由f(x)=0,即ln(x2-x+1)=0,得x2-x+1=1,解得x=0(舍去)或x=1.

当x≤0时,f(x)=ex-x-2,f′(x)=ex-1≤0,所以函数f(x)在(-∞,0]上单调递减.而f(0)=e0-0-2=-1<0,f(-2)=e-2-(-2)-2=e-2>0,故函数f(x)在(-2,0)上有且只有一个零点.

综上,函数f(x)只有两个零点.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-5两角和与差的正弦、余弦和正切(解析版) 题型:选择题

已知α,β∈(0,),满足tan(α+β)=4tanβ,则tanα的最大值是(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:3-3三角函数的图象与性质(解析版) 题型:选择题

已知函数f(x)=sinx+acosx的图象关于直线x=对称,则实数a的值为(  )

A.- B.- C. D.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-8函数与方程(解析版) 题型:解答题

已知函数f(x)=-x2+2ex+m-1,g(x)=x+ (x>0).

(1)若g(x)=m有实数根,求m的取值范围;

(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-8函数与方程(解析版) 题型:填空题

若函数f(x)=|x|+ (a>0)没有零点,则实数a的取值范围为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-7函数的图象(解析版) 题型:填空题

给出定义:若m-<x≤m+(其中m为整数),则m叫做离实数x最近的整数,记作{x}=m,在此基础上给出下列关于函数f(x)=|x-{x}|的四个命题:①函数y=f(x)的定义域为R,值域为[0,];②函数y=f(x)在[-]上是增函数;③函数y=f(x)是周期函数,最小正周期为1;④函数y=f(x)的图象关于直线x= (k∈Z)对称.其中正确命题的序号是________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-7函数的图象(解析版) 题型:填空题

函数f(x)=的图象如图所示,则a+b+c=________.

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-6对数与对数函数(解析版) 题型:选择题

定义在R上的函数f(x)满足f(-x)=-f(x),f(x-2)=f(x+2),且x∈(-1,0)时,f(x)=2x+,则f(log220)的值为(  )

A.1 B. C.-1 D.-

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-3函数的奇偶性与周期性(解析版) 题型:填空题

已知定义在R上的偶函数满足:f(x+4)=f(x)+f(2),且当x∈[0,2]时,y=f(x)单调递减,给出以下四个命题:

①f(2)=0;

②x=-4为函数y=f(x)图象的一条对称轴;

③函数y=f(x)在[8,10]上单调递增;

④若方程f(x)=m在[-6,-2]上的两根为x1,x2,则x1+x2=-8.

以上命题中所有正确命题的序号为________.

 

查看答案和解析>>

同步练习册答案