精英家教网 > 高中数学 > 题目详情
11.求函数y=2-$\frac{3}{\sqrt{{x}^{2}-4x+5}}$的定义域和值域(  )
A.(-∞,-$\frac{1}{2}$],值域[-1,2]B.(-∞,-$\frac{1}{2}$],值域[-1,2)
C.定义域R,值域[-1,2)D.定义域R,值域[-1,2]

分析 配方得到x2-4x+5=(x-2)2+1,从而看出该函数定义域为R,并得到$\sqrt{{x}^{2}-4x+5}≥1$,进而求出$\frac{3}{\sqrt{{x}^{2}-4x+5}}$的范围,进而求出y的范围,即函数值域,从而找出正确选项.

解答 解:x2-4x+5=(x-2)2+1≥1;
∴$\sqrt{{x}^{2}-4x+5}≥1$;
∴$0<\frac{3}{\sqrt{{x}^{2}-4x+5}}≤3$;
∴$-1≤2-\frac{3}{\sqrt{{x}^{2}-4x+5}}<2$;
∴该函数定义域为R,值域为[-1,2).
故选C.

点评 考查函数定义域和值域的定义及求法,配方法的运用,根据不等式的性质求函数值域的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.分别作出函数①y=-3x+1,②y=x2+2x的图象,并根据图象回答以下两个问题:
(1)以上两个函数有无最大值或最小值?如果有,请求出.
(2)以上两个函数在(-∞,+∞)上是否是单调函数?如果不是,请说出它的变化趋势.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.画出不等式组$\left\{\begin{array}{l}{x-y+3≥0}\\{x+y≥0}\\{x≤2}\end{array}\right.$表示的平面区域,并回答下列问题:
(1)指出x,y的取值范围;
(2)平面区域内有多少个整点?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设等比数列{an}的公比q>1,前n项和为Sn,则$\underset{lim}{n→∞}$$\frac{{S}_{n+2}}{{S}_{n}}$=q2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知Rt△ABC中,周长为定值L,求该三角形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知动点M在运动过程中,总满足|MF1|+|MF2|=2$\sqrt{2}$,其中F1(-1,0),F2(1,0).
(1)求动点M的轨迹E的方程;
(2)斜率存在且过点A(0,1)的直线l与轨迹E交于A,B两点,轨迹E上存在一点P满足$\sqrt{2}$$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若“?x∈R,使x2-2ax+2<0”是假命题,则实数a的范围$[-\sqrt{2},\sqrt{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知(1+ax)5(1-2x)4的展开式中x2的系数为-16,则实数a的值为(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在等差数列{an}中,a1=1,Sn为其前n项和.若$\frac{{S}_{19}}{19}$-$\frac{{S}_{17}}{17}$=6,则S10的值等于(  )
A.246B.258C.280D.270

查看答案和解析>>

同步练习册答案