精英家教网 > 高中数学 > 题目详情
6.已知Rt△ABC中,周长为定值L,求该三角形面积的最大值.

分析 设直角三角形的两直角边为a、b,斜边为c,因为L=a+b+c,c=$\sqrt{{a}^{2}+{b}^{2}}$,两次运用均值不等式即可求解.

解答 解:直角三角形的两直角边为a、b,斜边为c,面积为S,周长L,
由于a+b+$\sqrt{{a}^{2}+{b}^{2}}$=L≥2$\sqrt{ab}$+$\sqrt{2ab}$.(当且仅当a=b时取等号)
∴$\sqrt{ab}$≤$\frac{L}{2+\sqrt{2}}$
∴S=$\frac{1}{2}$ab≤$\frac{1}{2}$($\frac{L}{2+\sqrt{2}}$)2=$\frac{3-2\sqrt{2}}{4}{L}^{2}$.
故当且仅当a=b=(1-$\frac{\sqrt{2}}{2}$)L,该三角形的面积最大,且为$\frac{3-2\sqrt{2}}{4}{L}^{2}$.

点评 利用均值不等式解决实际问题时,列出有关量的函数关系式或方程式是均值不等式求解或转化的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在数列{an}中,已知an+1an=2an-an+1,且a1=2(n∈N+),设bn=an2-an,且Sn为{bn}的前n项和,试证:2≤Sn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f($\sqrt{x}$-1)=x2+2$\sqrt{x}$,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求y=$\frac{{x}^{2}-x+1}{{x}^{2}+x+1}$(x∈(0,+∞))值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=x2+4x+1在区间(-6,a)上单调递减,则实数a的取值范围是(-6,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.求函数y=2-$\frac{3}{\sqrt{{x}^{2}-4x+5}}$的定义域和值域(  )
A.(-∞,-$\frac{1}{2}$],值域[-1,2]B.(-∞,-$\frac{1}{2}$],值域[-1,2)
C.定义域R,值域[-1,2)D.定义域R,值域[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,动点P到定点M(0,2)和它到定直线y=0的距离相等,设点P的轨迹为C.
(1)求曲线C的方程;
(2)过定点M作直线l与曲线C相交于A、B两点,若点N是点M关于原点对称的点,求△ANB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.斜率为1,与圆x2+y2=1相切的直线的方程为(  )
A.$x-y+\sqrt{2}=0$B.$x-y-\sqrt{2}=0$
C.$x-y+\sqrt{2}=0$或$x-y-\sqrt{2}=0$D.x-y-2=0或x-y+2=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若直线y=-x+1与曲线f(x)=-$\frac{1}{a}$ex+b相切于点A(0,1),则实数a=1,b=2.

查看答案和解析>>

同步练习册答案