分析 设直角三角形的两直角边为a、b,斜边为c,因为L=a+b+c,c=$\sqrt{{a}^{2}+{b}^{2}}$,两次运用均值不等式即可求解.
解答 解:直角三角形的两直角边为a、b,斜边为c,面积为S,周长L,
由于a+b+$\sqrt{{a}^{2}+{b}^{2}}$=L≥2$\sqrt{ab}$+$\sqrt{2ab}$.(当且仅当a=b时取等号)
∴$\sqrt{ab}$≤$\frac{L}{2+\sqrt{2}}$
∴S=$\frac{1}{2}$ab≤$\frac{1}{2}$($\frac{L}{2+\sqrt{2}}$)2=$\frac{3-2\sqrt{2}}{4}{L}^{2}$.
故当且仅当a=b=(1-$\frac{\sqrt{2}}{2}$)L,该三角形的面积最大,且为$\frac{3-2\sqrt{2}}{4}{L}^{2}$.
点评 利用均值不等式解决实际问题时,列出有关量的函数关系式或方程式是均值不等式求解或转化的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-$\frac{1}{2}$],值域[-1,2] | B. | (-∞,-$\frac{1}{2}$],值域[-1,2) | ||
| C. | 定义域R,值域[-1,2) | D. | 定义域R,值域[-1,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $x-y+\sqrt{2}=0$ | B. | $x-y-\sqrt{2}=0$ | ||
| C. | $x-y+\sqrt{2}=0$或$x-y-\sqrt{2}=0$ | D. | x-y-2=0或x-y+2=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com