精英家教网 > 高中数学 > 题目详情
20.执行如图所示的程序框图,若输入三个数a=log36,b=log48,c=1.22,则输出的结果为(  )
A.log36B.log48C.1.22D.log23

分析 模拟程序的运行,可得程序框图的功能是输出三个数中最大的数,利用指数函数与对数函数的单调性与1.5相比较即可得出.

解答 解:模拟程序的运行,可得程序框图的功能是输出三个数中最大的数,
∵a=log36=1+log32>1+log3$\sqrt{3}$=1.5,
b=log48=$\frac{lg8}{lg4}$=$\frac{3lg2}{2lg2}$=$\frac{3}{2}$=1.5.
c=1.22=1.44,
∴可得:c<b<a.
故选:A.

点评 本题考查了程序框图的应用,指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.下列命题中真命题的个数是(  )
①函数y=sinx,其导函数是偶函数;
②“若x=y,则x2=y2”的逆否命题为真命题;
③“x≥2”是“x2-x-2≥0”成立的充要条件;
④命题p:“?x0∈R,x02-x0+1<0”,则命题p的否定为:“?x∈R,x2-x+1≥0”.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,已知椭圆C1:$\frac{x^2}{4}+{y^2}=1$,曲线C2:y=x2-1与y轴的交点为M,过坐标原点O的直线l与C2相交于A,B两点,直线MA,MB分别与C1相交于D,E两点,则$\overrightarrow{ME}•\overrightarrow{MD}$的值是(  )
A.正数B.0C.负数D.皆有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某市房产契税标准如下:
购房总价(万)(0,200](200,400](400,+∞)
税率1%1.5%3%
从该市某高档住宅小区,随机调查了一百户居民,获得了他们的购房总额数据,整理得到了如下的频率分布直方图:

(Ⅰ)假设该小区已经出售了2000套住房,估计该小区有多少套房子的总价在300万以上,说明理由.
(Ⅱ)假设同组中的每个数据用该组区间的右端点值代替,估计该小区购房者缴纳契税的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,若输入三个数a=log36,b=log510,c=log714,则输出的结果为(  )
A.log36B.log510C.log714D.log26

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若集合A={x|x(x-1)<2},且A∪B=A,则集合B可能是(  )
A.{-1,2}B.{0,1}C.{-1,0}D.{0,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=tan(x+\frac{π}{4})$.
(Ⅰ)求f(x)的定义域;
(Ⅱ)设β∈(0,π),且$f(β)=2cos(β-\frac{π}{4})$,求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设{an}是首项为1,公差为2的等差数列,{bn}是首项为1,公比为q的等比数列.记cn=an+bn,n=1,2,3,….
(1)若{cn}是等差数列,求q的值;
(2)求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:
古文迷非古文迷合计
男生262450
女生302050
合计5644100
(Ⅰ)根据表中数据能否判断有60%的把握认为“古文迷”与性别有关?
(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;
(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.500.400.250.050.0250.010
k00.4550.7081.3213.8415.0246.635

查看答案和解析>>

同步练习册答案