精英家教网 > 高中数学 > 题目详情
下列函数中,定义域和值域相同的是(  )
A、y=x2和y=2x
B、y=sinx和y=tanx
C、y=x3和y=log2x
D、y=x2和y=|x|
考点:函数的定义域及其求法,函数的值域
专题:函数的性质及应用
分析:分别求两个函数的定义域与值域,可求出答案
解答: 解:A、函数y=x2的值域为[0,+∞),函数y=2x的值域为(0,+∞),故不能选A;
B、函数y=sinx的定义域为R,而函数y=tanx的定义域为x≠kπ+
π
2
(k∈Z)的全体实数,故不能选B;
C、函数y=x3的定义域为R,函数y=log2x的定义域为(0,+∞),故不能选C;
D、两个函数的定义域与值域分别相同,
故选:D.
点评:本题主要考查函数的定义域与值域的求法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

为了考察某公司生产的袋装牛奶的质量是否达标,从800袋牛奶中抽取60袋进行检验.利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表的第8行第7列的数7开始向右读,则选出的第3袋牛奶的编号是
 
.(下面摘取了随机数表第7行至第9行的部分数据)
第7行  84 42 17 53 31  57 24 55 06 88  77 04 74 47 …
第8行  63 01 63 78 59  16 95 55 67 19  98 10 50 71 …
第9行  33 21 12 34 29  78 64 56 07 82  52 42 07 44 …

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式x2-ax+1≥0对于一切a∈[-2,2]恒成立,则x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个判断:
①在频率分布直方图中,众数左边和右边的直方图的面积相等;
②R2统计量是用来刻画回归效果的统计量,R2的值越大,说明回归模型拟合效果越好;
③废品率x%和每吨生铁的成本y元之间的回归直线方程是
y
=2x+256,这表明废品率每增加1%,生铁的成本平均每吨增加2元;
④“某彩票的中奖概率为
1
1000
”意味着买1000张这种彩票就一定能中奖.
其中,正确的个数是(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=cos(x-
π
3
)+2cos2
x
2
-1,x∈R.
(1)求函数f(x)的值域;
(2)设△ABC的内角A,B,C所对应的边分别为a,b,c若f(B)=
3
,b=1,c=
3
求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系上xOy中,角α的顶点为坐标原点,始边在x轴的正半轴上,当角α的终边在直线l:y=3x上时.
求:(1)
sinα+cosα
sinα-cosα
的值;
   (2)
sinαcosα
sin2α+2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O是△ABC的外心,AB=6,AC=10,若
AO
=x
AB
+y
AC
,且2x+10y=5,则△ABC的面积为(  )
A、24
B、
20
2
3
C、18或
20
2
3
D、24或20
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2sin(2x-
π
3
)的部分图象如图所示.
(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;
(Ⅱ)求f(x)在区间[-
π
4
π
6
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2
x
+
1
x
+1
(1)求函数f(x)在x=4处的切线方程(用一般式作答);
(2)令F(x)=2x
x
+(1-m)x+1,若关于x的不等式F(x)≤0有实数解.求实数m的取值范围.

查看答案和解析>>

同步练习册答案