精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=xln(x+1)+($\frac{1}{2}$-a)x+2-a,a∈R.
(I)当x>0时,求函数g(x)=f(x)+ln(x+1)+$\frac{1}{2}$x的单调区间;
(Ⅱ)当a∈Z时,若存在x≥0,使不等式f(x)<0成立,求a的最小值.

分析 (Ⅰ)求出函数g(x)的导数,通过讨论a的范围求出函数的单调区间即可;
(Ⅱ)问题等价于a>$\frac{xln(x+1)+\frac{1}{2}x+2}{x+1}$,令h(x)=$\frac{xln(x+1)+\frac{1}{2}x+2}{x+1}$,x≥0,
唯一转化为求出a>h(x)min,根据函数的单调性求出h(x)的最小值,从而求出a的最小值即可.

解答 解:(Ⅰ)∵g(x)=(x+1)ln(x+1)+(1-a)x+2-a,(x>0),
∴g′(x)=ln(x+1)+2-a,
当2-a≥0即a≤2时,g′(x)>0对x∈(0,+∞)恒成立,
此时,g(x)在(0,+∞)递增,无递减区间,
当2-a<0即a>2时,
由g′(x)>0,得x>ea-2-1,由g′(x)<0,得0<x<ea-2-1,
此时,g(x)在(0,ea-2-1)递减,在(ea-2-1,+∞)递增,
综上,a≤2时,g(x)在(0,+∞)递增,无递减区间;
a>2时,g(x)在(0,ea-2-1)递减,在(ea-2-1,+∞)递增,
(Ⅱ)由f(x)<0,得(x+1)a>xln(x+1)+$\frac{1}{2}$x+2,
当x≥0时,上式等价于a>$\frac{xln(x+1)+\frac{1}{2}x+2}{x+1}$,
令h(x)=$\frac{xln(x+1)+\frac{1}{2}x+2}{x+1}$,x≥0,
由题意,存在x≥0,使得f(x)<0成立,则只需a>h(x)min
∵h′(x)=$\frac{ln(x+1)+x-\frac{3}{2}}{{(x+1)}^{2}}$,
令u(x)=ln(x+1)+x-$\frac{3}{2}$,显然u(x)在[0,+∞)递增,
而u(0)=-$\frac{3}{2}$<0,u(1)=ln2-$\frac{1}{2}$>0,
故存在x0∈(0,1),使得u(x0)=0,即ln(x0+1)=$\frac{3}{2}$-x0
又当x0∈[0,x0)时,h′(x)<0,h(x)递减,
当x∈[x0,+∞)时,h′(x)>0,h(x)递增,
故x=x0时,h(x)有极小值(也是最小值),
故h(x)min=$\frac{{x}_{0}(\frac{3}{2}{-x}_{0})+{\frac{1}{2}x}_{0}+2}{{x}_{0}+1}$,
故a≥$\frac{{x}_{0}(\frac{3}{2}{-x}_{0})+{\frac{1}{2}x}_{0}+2}{{x}_{0}+1}$=$\frac{3{-{(x}_{0}-1)}^{2}}{{x}_{0}+1}$,x0∈(0,1),
而2<$\frac{3{-{(x}_{0}-1)}^{2}}{{x}_{0}+1}$<3,
故a的最小整数值是3.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,考查转化思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.设a=lg2,b=20.5,$c=cos\frac{3}{4}π$,则a,b,c按由小到大的顺序是c<a<b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设等差数列{an}的公差为d,且2a1=d,2an=a2n-1.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{{a}_{n}}{{2}^{n}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点M在线段AB上,且|AM|=1,$|MB|=\sqrt{2}$,当线段AB的两个端点A、B分别在x轴、y轴上滑动时,动点M的轨迹记为C.
(1)求C的方程;
(2)过点P(0,1)且互相垂直的两条直线交C于E,F(E,F异于点P)两点,当△PEF的外接圆的圆心在直线y=x上时,求直线EF的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将函数f(x)=sin2x+$\sqrt{3}$cos2x图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将图象上所有点向右平移$\frac{π}{6}$个单位长度,得到函数g (x)的图象,则g(x)图象的一条对称轴方程是(  )
A.x=一$\frac{π}{6}$B.x=$\frac{π}{6}$C.x=$\frac{24π}{25}$D.x=$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.将函数f(x)=sin2x的图象向右平移$\frac{π}{6}$个单位得到函数g(x)的图象,则函数g(x)的单调递增区间是(  )
A.$[kπ-\frac{π}{3},kπ+\frac{π}{6}](k∈z)$B.$[kπ-\frac{π}{6},kπ+\frac{π}{3}](k∈Z)$
C.$[kπ-\frac{π}{12},kπ+\frac{5π}{12}](k∈Z)$D.$[kπ-\frac{5π}{12},kπ+\frac{π}{12}](k∈z)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个球的体积、表面积分别为V、S,若函数V=f(S),f'(S)是f(S)的导函数,则f'(π)=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.我们知道:“心有灵犀”一般是对人的心理活动非常融洽的一种描述,它也可以用数学来定义:甲、乙两人都在{1,2,3,4,5,6}中说一个数,甲说的数记为a,乙说的数记为b,若|a-b|≤1,则称甲、乙两人“心有灵犀”,由此可以得到甲、乙两人“心有灵犀”的概率是(  )
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{1}{3}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知P为圆C:(x-2)2+(y-2)2=1上任一点,Q为直线l:x+y=1上任一点,则$|\overrightarrow{OP}+\overrightarrow{OQ}|$的最小值为$\frac{5\sqrt{2}-2}{2}$.

查看答案和解析>>

同步练习册答案