精英家教网 > 高中数学 > 题目详情
7.我们知道:“心有灵犀”一般是对人的心理活动非常融洽的一种描述,它也可以用数学来定义:甲、乙两人都在{1,2,3,4,5,6}中说一个数,甲说的数记为a,乙说的数记为b,若|a-b|≤1,则称甲、乙两人“心有灵犀”,由此可以得到甲、乙两人“心有灵犀”的概率是(  )
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{1}{3}$D.$\frac{4}{9}$

分析 本题是一个等可能事件的概率,试验发生包含的事件是从6个数字中各自想一个数字,可以重复,可以列举出共有36种结果,满足条件的事件可以通过列举得到结果,根据等可能事件的概率公式得到结果.

解答 解:(I)由题意知,本题是一个等可能事件的概率
列举出所有基本事件为:
(1,1),(2,2),(2,3),(4,4),(5,5),(6,6)
(1,2),(2,1),(1,3),(3,1),(1,4),(4,1),(1,5),(5,1),(1,6),(6,1)
(1,3),(3,1),(2,4),(4,2),(3,5),(5,3),(4,6),(6,4),
(1,4),(4,1),(2,5),(5,2),(3,6),(6,3),
(1,5),(5,1),(2,6),(6,2),
(1,6),(6,1),共计36个.
记“两人想的数字相同或相差1”为事件B,
事件B包含的基本事件为:
(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)
(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),
(4,5),(5,4),(5,6),(6,5),共计16个.
∴P=$\frac{16}{36}$=$\frac{4}{9}$,
∴“甲乙心有灵犀”的概率为$\frac{4}{9}$.
故选D.

点评 本题考查古典概型及其概率公式.考查利用分类计数原理表示事件数,考查理解能力和运算能力,注意列举出的事件数做到不重不漏.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.如果正整数M的各位数字均不为4,且各位数字之和为6,则称M为“幸运数”,则四 位正整数中的“幸运数”共有(  )
A.45个B.41个C.40个D.38个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=xln(x+1)+($\frac{1}{2}$-a)x+2-a,a∈R.
(I)当x>0时,求函数g(x)=f(x)+ln(x+1)+$\frac{1}{2}$x的单调区间;
(Ⅱ)当a∈Z时,若存在x≥0,使不等式f(x)<0成立,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过抛物线y2=2px(p>0)的焦点作直线交抛物线于P(x1,y1),Q(x2,y2)两点,若x1+x2=6,|PQ|=10,则抛物线的方程为(  )
A.y2=2xB.y2=4xC.y2=6xD.y2=8x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设等比数列{an}的前n项和为Sn,已知an+1=Sn+2(n∈N+).
(1)求数列{an}的通项公式;
(2)若bn=$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+1}}$,求数列{bn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若抛物线y2=8x的准线和圆x2+y2+6x+m=0相切,则实数m的值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知复数z满足(2-i)z=1+i(i为虚数单位),则$\overline z$=(  )
A.$\frac{1}{5}+\frac{3}{5}i$B.$\frac{1}{5}-\frac{3}{5}i$C.$-\frac{1}{5}+\frac{3}{5}i$D.$-\frac{1}{5}-\frac{3}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$\overrightarrow a=(1,2)$,$\overrightarrow b=(m,1)$,且$\overrightarrow a⊥\overrightarrow b$,则m的值为(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知复数z满足z(1-i)2=1+i(i为虚数单位),则z=(  )
A.$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$-$\frac{1}{2}$iC.-$\frac{1}{2}$+$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

同步练习册答案