精英家教网 > 高中数学 > 题目详情
2.设等比数列{an}的前n项和为Sn,已知an+1=Sn+2(n∈N+).
(1)求数列{an}的通项公式;
(2)若bn=$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+1}}$,求数列{bn}前n项和Tn

分析 (1)运用数列的递推式,结合等比数列,求得首项和公比,运用通项公式即可得到所求;
(2)化简可得bn=$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,再由数列的求和方法:裂项相消求和,化简即可得到所求和.

解答 解:(1)由an+1=Sn+2(n∈N+),
得an=Sn-1+2(n∈N+,n>1).
两式相减得:an+1-an=an,即an+1=2an(n≥2),
∵{an}是等比数列,所以a2=2a1,又a2=a1+2
 则a1+2=2a1,∴a1=2,
∴an=2•2n-1=2n
(2)由(1)知an+1=2n+1,an=2n
∴bn=$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
数列{bn}前n项和Tn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.

点评 本题考查等比数列的通项公式的求法,考查数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.函数f(x)=sinωx+$\sqrt{3}$cosωx+1(ω>0)的最小正周期为π,当x∈[m,n]时,f(x)至少有5个零点,则n-m的最小值为2π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将函数f(x)=sin2x+$\sqrt{3}$cos2x图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将图象上所有点向右平移$\frac{π}{6}$个单位长度,得到函数g (x)的图象,则g(x)图象的一条对称轴方程是(  )
A.x=一$\frac{π}{6}$B.x=$\frac{π}{6}$C.x=$\frac{24π}{25}$D.x=$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个球的体积、表面积分别为V、S,若函数V=f(S),f'(S)是f(S)的导函数,则f'(π)=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在等差数列{an}中,a1=1,a5=9,数列{an}、{bn}满足$\frac{{a}_{1}}{{b}_{1}}$+$\frac{{a}_{2}}{{b}_{2}}$+$\frac{{a}_{3}}{{b}_{3}}$+…+$\frac{{a}_{n}}{{b}_{n}}$=6-$\frac{{a}_{n+2}}{{b}_{n}}$(n∈N*).
(Ⅰ)求证:数列{bn}是等比数列;
(Ⅱ)求数列{$\frac{2+{a}_{n}}{{b}_{n}}$}的前n项的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.我们知道:“心有灵犀”一般是对人的心理活动非常融洽的一种描述,它也可以用数学来定义:甲、乙两人都在{1,2,3,4,5,6}中说一个数,甲说的数记为a,乙说的数记为b,若|a-b|≤1,则称甲、乙两人“心有灵犀”,由此可以得到甲、乙两人“心有灵犀”的概率是(  )
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{1}{3}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}是各项均不为零的等差数列,Sn为其前n项和,且S2n-1=a${\;}_{n}^{2}$(n∈N*),若不等式$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{{a}_{2}a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$≤nlog${\;}_{\frac{1}{8}}$λ对任意n∈N*恒成立,则实数λ的最大值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.${∫}_{0}^{1}$(2x+$\sqrt{1-{x}^{2}}$)dx=1+$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.为了得到y=cos(2πx-$\frac{π}{3}$)的图象,只需将y=sin(2πx+$\frac{π}{3}$)的图象向右平移n(n>0)个单位,则n的最小值为$\frac{1}{12}$.

查看答案和解析>>

同步练习册答案