精英家教网 > 高中数学 > 题目详情
19.已知复数z满足(2-i)z=1+i(i为虚数单位),则$\overline z$=(  )
A.$\frac{1}{5}+\frac{3}{5}i$B.$\frac{1}{5}-\frac{3}{5}i$C.$-\frac{1}{5}+\frac{3}{5}i$D.$-\frac{1}{5}-\frac{3}{5}i$

分析 利用复数的运算法则、共轭复数的定义即可得出.

解答 解:(2-i)z=1+i(i为虚数单位),
∴(2+i)(2-i)z=(1+i)(2+i),∴5z=1+3i,
∴z=$\frac{1}{5}$+$\frac{3}{5}$i,
则$\overline z$=$\frac{1}{5}$-$\frac{3}{5}$i,
故选:B.

点评 本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设等差数列{an}的公差为d,且2a1=d,2an=a2n-1.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{{a}_{n}}{{2}^{n}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个球的体积、表面积分别为V、S,若函数V=f(S),f'(S)是f(S)的导函数,则f'(π)=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.我们知道:“心有灵犀”一般是对人的心理活动非常融洽的一种描述,它也可以用数学来定义:甲、乙两人都在{1,2,3,4,5,6}中说一个数,甲说的数记为a,乙说的数记为b,若|a-b|≤1,则称甲、乙两人“心有灵犀”,由此可以得到甲、乙两人“心有灵犀”的概率是(  )
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{1}{3}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}是各项均不为零的等差数列,Sn为其前n项和,且S2n-1=a${\;}_{n}^{2}$(n∈N*),若不等式$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{{a}_{2}a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$≤nlog${\;}_{\frac{1}{8}}$λ对任意n∈N*恒成立,则实数λ的最大值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设F1,F2是双曲线$\frac{{x}^{2}}{3}$-y2=1的两个焦点,点P在双曲线上,当△F1PF2的面积为2时,$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=(  )
A.1B.$\frac{3}{2}$C.3D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.${∫}_{0}^{1}$(2x+$\sqrt{1-{x}^{2}}$)dx=1+$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知P为圆C:(x-2)2+(y-2)2=1上任一点,Q为直线l:x+y=1上任一点,则$|\overrightarrow{OP}+\overrightarrow{OQ}|$的最小值为$\frac{5\sqrt{2}-2}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若等比数列{an}的公比为2,且a3-a1=6,则$\frac{1}{{{a}_{1}}}$+$\frac{1}{{{a}_{2}}}$+…+$\frac{1}{{{a}_{n}}}$=1-$\frac{1}{{2}^{n}}$.

查看答案和解析>>

同步练习册答案