精英家教网 > 高中数学 > 题目详情
如图,底面是平行四边形的四棱锥P-ABCD,点E在PD上,且PE:ED=2:1,问:在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.
考点:直线与平面平行的判定
专题:空间位置关系与距离
分析:取棱PC的中点F,线段PE的中点M,连接BD.设BD∩AC=O.连接BF,MF,BM,OE.结合菱形的性质及三角形中位线定理及面面平行的判定定理可得平面BMF∥平面AEC,进而由面面平行的性质得到BF∥平面AEC.
解答: 解:存在点F为PC的中点,使BF∥平面AEC
理由如下:
取棱PC的中点F,线段PE的中点M,连接BD.设BD∩AC=O.
连接BF,MF,BM,OE.
∵PE:ED=2:1,F为PC的中点,E是MD的中点,
∴MF∥EC,BM∥OE.
∵MF?平面AEC,CE?平面AEC,BM?平面AEC,OE?平面AEC,
∴MF∥平面AEC,BM∥平面AEC.
∵MF∩BM=M,
∴平面BMF∥平面AEC.
又BF?平面BMF,
∴BF∥平面AEC.
点评:题考查的知识点是直线与平面平行的判定,关键是证得平面BMF∥平面AEC.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1
0
1-(x-1)2
-x)dx=(  )
A、
π
8
-
1
2
B、
π
4
-
1
2
C、
π
8
D、1-
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y,z∈Z,且满足x+y+z=3,x3+y3+z3=3,求x2+y2+z2所有可能的值组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆Σ的两个焦点分别是F1(-2,0)、F2(2,0),并且经过点P(
5
2
,-
3
2
).
(1)求椭圆Σ的标准方程;
(2)求∠F1PF2的平分线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,等腰梯形ABCD内接于⊙O,AB∥CD.过点A作⊙O的切线交CD的延长线于点E.求证:∠DAE=∠BAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知Rt△ABC在平面α内,D是斜边AB的中点,DE⊥α,且DE=12cm,AC=8cm,BC=6cm,求EA、EB、EC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,长方体ABCD-A1B1C1D1中,AB=BC=a,AA1=2a.
(1)求证:平面AB1D1∥平面C1BD;
(2)求两平面AB1D1与C1BD之间的距离.
(注:两平行平面之间的距离是其中一个平面上任意一点到另一个平面的距离)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=loga(x-3a)(a>0,且a≠1),当P(x,y)是函数y=f(x)图象上的点时,Q(x-a,-y)是函数y=g(x)图象上的点.?
(Ⅰ)求函数y=g(x)的解析式;?
(Ⅱ)当x∈[a+3,a+4]时,恒有f(x)-g(x)≤1,试确定a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y的回归方程为y=bx+a,若b=0.53,
.
x
=61.75,
.
y
=38.14,则回归方程为
 

查看答案和解析>>

同步练习册答案