精英家教网 > 高中数学 > 题目详情
如图,已知Rt△ABC在平面α内,D是斜边AB的中点,DE⊥α,且DE=12cm,AC=8cm,BC=6cm,求EA、EB、EC的长.
考点:直线与平面垂直的性质
专题:空间位置关系与距离
分析:连接CD,利用勾股定理先求得AB,进而可知AD,BD,CD的长度,最后利用勾股定理分别求得EA、EB、EC.
解答: 解:连接CD,
AB=
64+36
=10,
∴AD=DB=5,CD=
1
2
AB=5
∵DE⊥α,
∴DE⊥AB,DE⊥CD,
∴AE=BE=
AD2+DE2
=
25+144
=13,
CD=
CD2+DE2
=13.
点评:本题主要考查了线面垂直的性质,勾股定理在解三角形中的应用.考查了学生对基础知识的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若点P在曲线y=x3-x上移动,则过P点的切线的倾斜角的取值范围是(  )
A、[0,π)
B、(0,
π
2
)∪[
4
,π)
C、[0,
π
2
)∪(
π
2
4
]
D、[0,
π
2
)∪[
4
,π)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱锥A-BCD中,底面边长为a,侧棱长为2a,过B点作与则棱AC、AD相交的截面BEF,在这个截面三角形中,求:
(1)周长的最小值;
(2)周长最小时的截面面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=4,E、F分别为AB、PC的中点.
(1)求PC与平面PAB所成角的大小;
(2)求异面直线PE与AC所成角的大小;
(3)求二面角A-PB-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,底面是平行四边形的四棱锥P-ABCD,点E在PD上,且PE:ED=2:1,问:在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的偶函数,当x≥0时,f(x)单调递减,设f(1-m)<f(m),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(2x+
π
6
),x∈R.
(1)求f(-
π
2
)的值;
(2)设α是第二象限角,sinα=
1
3
,求f(α+
π
6
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作.若一周5个工作日里均无故障,可获利润10万元;发生一次故障可获利润5万元,只发生两次故障可获利润0万元,发生三次或三次以上故障就要亏损2万元.
(Ⅰ)设X表示一周5天内机器发生故障的天数,求X的分布列;
(Ⅱ)以Y表示一周内所获利润,则一周内利润的期望是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科)设函数f(x)=
ex+ae-x
x2
是奇函数,则实数a的值为
 

查看答案和解析>>

同步练习册答案