精英家教网 > 高中数学 > 题目详情
18.已知等差数列{an}、{bn}的前n项和分别为Sn,Tn,若3n•an=(2n+1)bn,则$\frac{S_9}{T_9}$=(  )
A.$\frac{19}{27}$B.$\frac{27}{19}$C.$\frac{11}{15}$D.$\frac{15}{11}$

分析 由已知得$\frac{{a}_{n}}{{b}_{n}}$=$\frac{2n+1}{3n}$,利用等差数列的前n项和公式得$\frac{S_9}{T_9}$=$\frac{\frac{9}{2}({a}_{1}+{a}_{9})}{\frac{9}{2}({b}_{1}+{b}_{9})}$=$\frac{{a}_{5}}{{b}_{5}}$,由此能求出结果.

解答 解:∵等差数列{an}、{bn}的前n项和分别为Sn,Tn
3n•an=(2n+1)bn
∴$\frac{{a}_{n}}{{b}_{n}}$=$\frac{2n+1}{3n}$,
∴$\frac{S_9}{T_9}$=$\frac{\frac{9}{2}({a}_{1}+{a}_{9})}{\frac{9}{2}({b}_{1}+{b}_{9})}$=$\frac{{a}_{5}}{{b}_{5}}$=$\frac{2×5+1}{3×5}$=$\frac{11}{15}$.
故选:C.

点评 本题考查两个等差数列的前9项和的比值的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.平行线3x+4y-9=0和6x+my-1=0的距离是$\frac{17}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.集合A={x∈R|0<x<3},B={x∈R|-1≤x≤2},则A∪B=(  )
A.{x|-1≤x≤3}B.{x|0≤x≤2}C.{x|-1≤x<3}D.{x|0<x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=xlnx,g(x)=-x2+ax-3
(1)对x∈(0,+∞),不等式2f(x)≥g(x)恒成立,求实数a的取值范围;
(2)证明:对一切x∈(0,+∞),都有$lnx>\frac{1}{e^x}-\frac{2}{ex}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在等差数列{an}中,Sn为其前n项的和,a3+a5=14,则S7的值为(  )
A.49B.44C.53D.56

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知等差数列{an}的前n项和为Sn,且a3=7,S6=39,则使Sn取最大值时n的值为(  )
A.8B.10C.9或10D.8或9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=|x2-5x+4|,f(x)的单调增区间为$[1,\frac{5}{2}]$,[4,+∞);若方程f(x)=mx有三个不相等的实根,则m=1,且三个实根的和是8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)解不等式:|2x-1|+|2x+1|≤6.
(2)求函数y=5$\sqrt{x-1}$+$\sqrt{10-2x}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l的参数方程为:$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ-2cosθ
(Ⅰ)求曲线C的普通方程.
(Ⅱ)求直线l被曲线C截得的弦长.

查看答案和解析>>

同步练习册答案