精英家教网 > 高中数学 > 题目详情
2.口袋内装有形状、大小完全相同的红球、白球和黑球,它们的个数分别为3、2、1,从中随机摸出1个球,则摸出的球不是白球的概率为$\frac{2}{3}$.

分析 所有的摸法有6种,而从中摸出1个球,则摸出的球不是白球有4种,根据概率公式计算即可.

解答 解:所有的摸法有6种,而从中摸出1个球,则摸出的球不是白球有4种,
摸出的球不是白球的概率为$\frac{4}{6}$=$\frac{2}{3}$,
故答案为:$\frac{2}{3}$.

点评 本题考查古典概型及其概率计算公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.如图,是圆锥一部分和四分之一球组成的组合体的三视图,则此几何体的体积为(  )
A.$\frac{8π}{3}$B.$\frac{16π}{3}$C.$\frac{14π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某几何体的三视图如图所示.则该几何体的外接球的表面积为(  )
A.B.16πC.32πD.64π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.点P(x0,y0)是圆x2+y2=4上得动点,点M为OP(O是原点)的中点,则动点M的轨迹方程是x2+y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1}{2}$x2+2ax+blnx-1在x=1处取得极值$\frac{1}{2}$.
(I)求函数f(x)的解析式;
(Ⅱ)设函数g(x)=m[f(x)-$\frac{1}{2}$x2+1]+x2+3mlnx.
(1)若函数y=g(x)上的点都在第一象限,求实数m的取值范围;
(2)求证:对于任意的实数m,存在x0∈(1,e),使得g′(x0)=$\frac{g(e)-g(1)}{e-1}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若命题p:?x∈R,x2-3x+5>0,则该命题的否定是(  )
A.?x∈R,x2-3x+5≤0B.?x∈R,x2-3x+5>0C.?x∈R,x2-3x+5<0D.?x∈R,x2-3x+5≤0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知空间向量$\overrightarrow a=(-2,x,1),\overrightarrow b=(1-x,-1,-2)$,若$\overrightarrow a⊥\overrightarrow b$,则x=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a>0,b>0,且a+b=1,求证:
(1)(1+$\frac{1}{a}$)(1+$\frac{1}{b}$)≥9;
(2)$\frac{{a}^{2}+{b}^{2}}{ab+1}$≥$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$ (a>b>0)的离心率e=$\frac{\sqrt{6}}{3}$,过点A(a,0)和B(0,-b)的直线与原点的距离为$\frac{\sqrt{3}}{2}$.
(1)求椭圆M的方程;
(2)已知点P(-1,0)和点Q(0,2),若直线l恒过点Q且与椭圆M交于C、D两点.问:是否存在以弦CD为直径的圆过点P?若存在,求出置直线l的方程.若不存在,请说明理由.

查看答案和解析>>

同步练习册答案