精英家教网 > 高中数学 > 题目详情
2.已知某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{4}{3}$+πB.4+πC.$\frac{4}{3}$+2πD.4+2π

分析 由三视图可知:该几何体由三棱柱与一个半圆柱组成的几何体.

解答 解:由三视图可知:该几何体由三棱柱与一个半圆柱组成的几何体.
∴该几何体的体积=$\frac{1}{2}×{2}^{2}×2$+$\frac{1}{2}×$π×12×2=4+π.
故选:B.

点评 本题考查了三棱柱与一个半圆柱的三视图、体积计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x(x>0)}\\{|x|(x≤0)}\end{array}\right.$,函数g(x)满足以下三点条件:①定义域为R;②对任意x∈R,有g(x)=$\frac{1}{2}$g(x+2);③当x∈[-1,1]时,g(x)=$\sqrt{1-{x^2}}$.则函数y=f(x)-g(x)在区间[-4,4]上零点的个数为(  )
A.7B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)的定义域是R,f(0)=2,对任意x∈R,f′(x)>f(x)+1,则下列正确的为(  )
A.(f(1)+1)•e>f(2)+1B.3e<f(2)+1
C.3•e≥f(1)+1D.3e2与f(2)+1大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设实数x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ y+1≥0\\ x+y+1≤0\end{array}\right.$,则2x-y的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx+ax-x2(0<a≤1)
(I)$a=\frac{1}{2}$时,求f(x)的图象在点(1,f(1))处的切线的方程
(II)设函数f(x)单调递增区间为(s,t)(s<t),求t-s的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.一个几何体的三视图如图所示,则这个几何体的体积为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数f(x)为区间D上的凸函数,则对于D上的任意n个值x1、x2、…、xn,总有f(x1)+f(x2)+…+f(xn)≤nf($\frac{{x}_{1}+{x}_{2}+…+{x}_{n}}{n}$),现已知函数f(x)=sinx在[0,$\frac{π}{2}$]上是凸函数,则在锐角△ABC中,sinA+sinB+sinC的最大值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{3}{2}$D.$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.(9x+$\frac{1}{3\sqrt{x}}$)6展开式的常数项为15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.(x+1)5(x-2)的展开式中x2的系数为(  )
A.25B.5C.-15D.-20

查看答案和解析>>

同步练习册答案