12£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{lo{g}_{2}x£¨x£¾0£©}\\{|x|£¨x¡Ü0£©}\end{array}\right.$£¬º¯Êýg£¨x£©Âú×ãÒÔÏÂÈýµãÌõ¼þ£º¢Ù¶¨ÒåÓòΪR£»¢Ú¶ÔÈÎÒâx¡ÊR£¬ÓÐg£¨x£©=$\frac{1}{2}$g£¨x+2£©£»¢Ûµ±x¡Ê[-1£¬1]ʱ£¬g£¨x£©=$\sqrt{1-{x^2}}$£®Ôòº¯Êýy=f£¨x£©-g£¨x£©ÔÚÇø¼ä[-4£¬4]ÉÏÁãµãµÄ¸öÊýΪ£¨¡¡¡¡£©
A£®7B£®6C£®5D£®4

·ÖÎö µ±x¡Ê[-3£¬-1]ʱ£¬g£¨x£©=2$\sqrt{1-£¨x+2£©^{2}}$£»µ±x¡Ê[1£¬3]ʱ£¬g£¨x£©=$\frac{1}{2}\sqrt{1-£¨x-2£©^{2}}$£¬ÔÚÍ¬Ò»×ø±êϵÖУ¬×÷³öf£¨x£©£¬g£¨x£©µÄͼÏó£¬Á½¸öͼÏóÓÐ4¸ö½»µã£¬¿ÉµÃ½áÂÛ£®

½â´ð ½â£º¡ß¶ÔÈÎÒâx¡ÊR£¬ÓÐg£¨x£©=$\frac{1}{2}$g£¨x+2£©£»µ±x¡Ê[-1£¬1]ʱ£¬g£¨x£©=$\sqrt{1-{x^2}}$£¬
¡àµ±x¡Ê[-3£¬-1]ʱ£¬g£¨x£©=2$\sqrt{1-£¨x+2£©^{2}}$£»µ±x¡Ê[1£¬3]ʱ£¬g£¨x£©=$\frac{1}{2}\sqrt{1-£¨x-2£©^{2}}$£¬
ÔÚÍ¬Ò»×ø±êϵÖУ¬×÷³öf£¨x£©£¬g£¨x£©µÄͼÏó£¬Á½¸öͼÏóÓÐ4¸ö½»µã£¬
¡àº¯Êýy=f£¨x£©-g£¨x£©ÔÚÇø¼ä[-4£¬4]ÉÏÁãµãµÄ¸öÊýΪ4£¬
¹ÊÑ¡D£®

µãÆÀ ±¾Ì⿼²éº¯ÊýÁãµãµÄÅж¨£¬¿¼²éÊýÐνáºÏµÄÊýѧ˼Ï룬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSnÂú×ãSn+Sm=Sn+m£¨n£¬m¡ÊN*£©ÇÒa1=5£¬Ôòa8=£¨¡¡¡¡£©
A£®40B£®35C£®12D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÃüÌâ¡°?x¡ÊR£¬x2£¾0¡±µÄ·ñ¶¨ÊÇ£¨¡¡¡¡£©
A£®?x¡ÊR£¬x2¡Ü0B£®$?{x_0}¡ÊR£¬{x_0}^2£¾0$C£®$?{x_0}¡ÊR£¬{x_0}^2£¼0$D£®$?{x_0}¡ÊR£¬{x_0}^2¡Ü0$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏß${C_1}£º{£¨{x-1}£©^2}+{y^2}=1$£¬ÇúÏßC2µÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}x=\sqrt{2}cos¦È\\ y=sin¦È\end{array}\right.$£¬£¨¦ÈΪ²ÎÊý£©£¬ÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵ£®
£¨1£©ÇóC1£¬C2µÄ¼«×ø±ê·½³Ì£»
£¨2£©ÉäÏß$y=\frac{{\sqrt{3}}}{3}x£¨{x¡Ý0}£©$ÓëC1µÄÒìÓÚÔ­µãµÄ½»µãΪA£¬ÓëC2µÄ½»µãΪB£¬Çó|AB|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=sin£¨¦Øx+¦Õ£©£¨¦Ø£¾0£¬0£¼¦Õ£¼¦Ð£©µÄͼÏóÈçͼËùʾ£¬½«f£¨x£©µÄͼÏóÏò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»£¬µÃµ½g£¨x£©µÄͼÏó£¬Ôòº¯Êýg£¨x£©µÄ½âÎöʽΪ£¨¡¡¡¡£©
A£®g£¨x£©=sin2xB£®g£¨x£©=cos2xC£®$g£¨x£©=sin£¨2x+\frac{¦Ð}{6}£©$D£®$g£¨x£©=sin£¨2x+\frac{2¦Ð}{3}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖª¼¯ºÏA={x|2x£¾1}£¬B={x|0£¼x£¼1}£¬Ôò∁AB=£¨¡¡¡¡£©
A£®£¨0£¬1£©B£®£¨0£¬1]C£®£¨1£¬+¡Þ£©D£®[1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖª$\overrightarrow{a}$=£¨sinx£¬cosx£©£¬$\overrightarrow{b}$=£¨$\sqrt{3}$£¬-1£©£®
£¨¢ñ£©Èô$\overrightarrow{a}$¡Î$\overrightarrow{b}$£¬Çósin2x-6cos2xµÄÖµ£»
£¨¢ò£©Èôf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$£¬Çóº¯Êýf£¨2x£©µÄµ¥µ÷¼õÇø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èô²»µÈʽ3x2+1¡Ýmx£¨x-1£©¶ÔÓÚ?x¡ÊRºã³ÉÁ¢£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ-6¡Üm¡Ü2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑ֪ij¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®$\frac{4}{3}$+¦ÐB£®4+¦ÐC£®$\frac{4}{3}$+2¦ÐD£®4+2¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸