精英家教网 > 高中数学 > 题目详情
10.若$\left\{\begin{array}{l}{{a}^{3}-3{a}^{2}+4a=2016}\\{{b}^{3}-3{b}^{2}+4b=-2012}\end{array}\right.$,求a+b的值.

分析 设f(x)=x3-3x2+4x,求出导数,判断单调性,计算f(x)+f(2-x)=4,可得函数f(x)关于点(1,2)对称.由f(a)+f(b)=4,可得a+b的值.

解答 解:设f(x)=x3-3x2+4x,
可得f′(x)=3x2-6x+4=3(x-1)2+1>0,
即有f(x)在R上递增,
又f(2-x)=(2-x)3-3(2-x)2+4(2-x),
可得f(x)+f(2-x)=(x+2-x)[x2+(2-x)2-x(2-x)]-3[x2+(2-x)2]+8
=2(3x2-6x+4)-3(2x2-4x+4)+8=4,
即函数f(x)关于点(1,2)对称.
由f(a)+f(b)=a3-3a2+4a+(b3-3b2+4b)=2016-2012=4,
可得f(b)=f(2-a),即有b=2-a,
则a+b=2.

点评 本题考查两数和的求法,注意运用构造函数法,运用导数判断单调性,以及函数的对称性,判断f(x)关于点(1,2)对称是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,已知曲线C1的参数方程为$\left\{\begin{array}{l}x=2cosφ\\ y=2+2sinφ\end{array}$(φ为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4$\sqrt{3}$cosθ.
(Ⅰ)求C1与C2交点的直角坐标;
(Ⅱ)已知曲线C3的参数方程为$\left\{{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}}\right.$(0≤α<π,t为参数,且t≠0),C3与C1相交于点P,C2与C3相交于点Q,且|PQ|=8,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知项数相同的等比数列{an}和{bn},公比为q1,q2(q1,q2≠1),则下列数列①{3an};②{$\frac{2}{{a}_{n}}$};③{3${\;}^{{a}_{n}}$};④{2an-3bn};⑤{2an•3bn}中为等比数列的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$(t为参数),以原点O为极点,以x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=-$\frac{6}{\sqrt{1+8si{n}^{2}θ}}$.
(1)求曲线C1的普通方程与曲线C2的直角坐标方程;
(2)若C1上的点P对应的参数为t=$\frac{π}{2}$,Q为C2上的动点,求PQ中点M到直线C3:$\left\{\begin{array}{l}{x=-3\sqrt{3}+\sqrt{3}α}\\{y=-3-α}\end{array}\right.$(α为参数)距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知点A(-4,-3),B(2,9),圆C是以线段AB为直径的圆.
(1)求圆C的方程;
(2)设点P(0,2)则求圆内以P为中点的弦所在的直线l0的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若点(1,a)到直线y=x+1的距离是$\frac{{3\sqrt{2}}}{2}$,则实数a为(  )
A.-1B.5C.-1或5D.-3或3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数y=f(x)是定义在R上的奇函数,且在区间(-∞,0]上是减函数,则不等式f(lnx)<-f(1)的解集为(  )
A.(e,+∞)B.(${\frac{1}{e}$,+∞)C.(${\frac{1}{e}$,e)D.(0,$\frac{1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.调查200名50岁以上有吸烟习惯与患慢性气管炎的人的情况,获数据如表
患慢性气管炎未患慢性气管炎总计
吸烟s30100
不吸烟35t100
合计10595200
(1)表中s,t的值分别是多少;
(2)试问:有吸烟习惯与患慢性气管炎病是否有关?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.双曲线9x2-4y2=36的离心率为$\frac{\sqrt{13}}{2}$.

查看答案和解析>>

同步练习册答案