精英家教网 > 高中数学 > 题目详情
4.设i是虚数单位,复数$\frac{a-i}{1+i}$为纯虚数,则实数a的值为1.

分析 利用复数代数形式的乘除运算化简,再由实部为0且虚部不为0求得a值.

解答 解:$\frac{a-i}{1+i}$=$\frac{(a-i)(1-i)}{(1+i)(1-i)}=\frac{(a-1)-(a+1)i}{2}$.
∵复数$\frac{a-i}{1+i}$为纯虚数,
∴$\left\{\begin{array}{l}{a-1=0}\\{a+1≠0}\end{array}\right.$,即a=1.
故答案为:1.

点评 本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设a=$lo{g}_{\frac{1}{3}}2,b=lo{g}_{3}4,c=lo{g}_{3}2$,则a,b,c的大小关系是(  )
A.a<b<cB.b<a<cC.b<c<aD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若tanα=$\frac{3}{4}$,则tan2α=(  )
A.-$\frac{7}{24}$B.$\frac{7}{24}$C.-$\frac{24}{7}$D.$\frac{24}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)是定义在R上的偶函数,若对于x≥0,都有f(x+2)=-f(x)且当x∈[0,2)时,f(x)=xex-1,则f(-2017)+f(2018)=e-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{{e}^{x}-a}{x}$-alnx(a∈R),其中e=2.71828…是自然对数的底数.
(1)若f(x)=0的两个根分别为x1,x2,且满足x1x2=2,求a的值;
(2)当a>0,讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$•$\overrightarrow{b}$=1.若$\overrightarrow{e}$为平面单位向量,$(\overrightarrow a-\overrightarrow b)•\overrightarrow e$的最大值为(  )
A.7B.$\sqrt{7}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若点P分有向线段$\overrightarrow{AB}$所成的比是-$\frac{1}{3}$,则点B分有向线段$\overrightarrow{PA}$所成的比是-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在三棱锥A-BCD中,O为平面BCD内一点,若$\overrightarrow{AO}$=$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$+$\overrightarrow{AD}$),则O为△BCD的重心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设定义在(0,+∞)上的函数f(x)=axlnx-b(x2-1),其中a>0,b∈R..
(1)若a=1,b=0,求函数f(x)的极值;
(2)若不等式f(x)≤0在[1,+∞)上恒成立,求$\frac{b}{a}$的取值范围.

查看答案和解析>>

同步练习册答案