精英家教网 > 高中数学 > 题目详情
1.已知△ABC的内角A,B,C满足10sinA=12sinB=15sinC,则cosB=(  )
A.$\frac{{\sqrt{15}}}{4}$B.$\frac{9}{16}$C.$\frac{{3\sqrt{15}}}{16}$D.$\frac{5}{48}$

分析 由已知等式求出sinA,sinB,sinC的比值,利用正弦定理求出a,b,c的比值,设出a,b,c,利用余弦定理表示出cosB,代入计算即可求出值.

解答 解:∵10sinA=12sinB=15sinC,
∴$\frac{sinA}{6}=\frac{sinB}{5}=\frac{sinC}{4}$,
∴利用正弦定理化简得:$\frac{a}{6}=\frac{b}{5}=\frac{c}{4}$,
设a=6k,b=5k,c=4k,
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{36{k}^{2}+16{k}^{2}-25{k}^{2}}{2×6k×4k}$=$\frac{27}{48}$=$\frac{9}{16}$.
故选:B.

点评 此题考查了正弦、余弦定理,以及比例的性质在解三角形中的应用,熟练掌握定理是解本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.观察(x2)'=2x,(x4)'=4x3,(x6)'=6x5,(cosx)'=-sinx.由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=(  )
A.f(x)B.-f(x)C.g(x)D.-g(x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知极坐标系的极点和极轴与平面直角坐标的原点和X轴重合时,极坐标(2,π)化为平面直角坐标是(  )
A.(2,0)B.(-2,0)C.(0,2)D.(0,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=xex+c,若方程f(x)=0有两个不相等的实数根,则c的取值范围是(0,$\frac{1}{e}$) .

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.cos70°sin80°+cos20°sin10°=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.下列直线中与直线l:3x+2y-5=0相交的是③(填上正确的序号).
①y=-$\frac{3}{2}$x+5②3x+2y=0 ③$\frac{x}{3}$+$\frac{y}{2}$=1④$\frac{x}{2}$+$\frac{y}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知一个公园的形状如图所示,现有3种不同的植物要种在此公园的A,B,C,D,E这五个区域内,要求有公共边界的两块相邻区域种不同的植物,则不同的种法共有18种.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)的导函数f′(x)=3+cosx,x∈(-1,1),且f(0)=0,如果f(1-x)+f(1-x2)<0,则实数x的取值范围为(1,$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数y=ax2+bx+c,其中a,b,c∈{0,1,2},则不同的二次函数的个数共有(  )
A.256个B.18个C.16个D.10个

查看答案和解析>>

同步练习册答案