精英家教网 > 高中数学 > 题目详情
1.数列{an}和{bn}都是首项为1的等差数列,设Sn是数列{an}的前n项和,且由Sn=bn2
(1)求数列{an}和{bn}的通项公式;
(2)求数列{${\frac{2}{{{a_n}{a_{n+1}}}}}\right.$}的前n项和An

分析 (1)根据等差数列的定义和前n项和公式,得到关于a1,d的方程组解得即可,
(2)根据裂项求和即可求出数列前n项和.

解答 解:(1)设数列{an},{bn}的公差分别为d1,d2,依题意得:$\left\{\begin{array}{l}{a_1}+{a_2}={b_2}^2\\{a_1}+{a_2}+{a_3}={b_3}^2\end{array}\right.$,
所以$\left\{\begin{array}{l}1+1+{d_1}={(1+{d_2})^2}\\ 1+1+{d_1}+1+2{d_1}={(1+2{d_2})^2}\end{array}\right.$,
解之得$\left\{\begin{array}{l}{d_1}=2\\{d_2}=1\end{array}\right.$
所以an=2n-1,bn=n,
所以${S_n}=\frac{{n(1+{a_n})}}{2}={n^2}={({b_n})^2}$满足题意.
(2)因为$\frac{2}{{{a_n}{a_{n+1}}}}=\frac{2}{(2n-1)(2n+1)}=\frac{1}{2n-1}-\frac{1}{2n+1}$,
所以${A_n}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1}$=$1-\frac{1}{2n+1}=\frac{2n}{2n+1}$.

点评 本题考查了等差数列项公式,考查数列的前n项和以及裂项求和,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\frac{1}{{\sqrt{2-x}}}+\sqrt{x+2}$的定义域为(  )
A.{x|x≥-2}B.{x|x<2}C.{x|-2<x<2}D.{x|-2≤x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.圆x2+y2-8x+6y-11=0的圆心、半径是(  )
A.(4,3),6B.(4,-3),6C.(4,3),36D.(4,-3),36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知边长为$8\sqrt{3}$的正三角形的一个顶点位于原点,另外两个顶点在抛物线C:x2=2py(p>0)上.
(1)求抛物线C的方程;
(2)已知圆过定点D(0,2),圆心M在抛物线C上运动,且圆M与x轴交于A,B两点,设|DA|<|DB|,求$\frac{{|{DA}|}}{{|{DB}|}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=Asin(ωx+φ) (A>0,ω>0,|φ|<π)的 一段图象(如图)所示.
(1)求函数的解析式;
(2)当x∈[0,$\frac{π}{2}}$],求函数f(x)的最值,并且求使f(x)取得最值对应x的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.使sinx<cosx成立的一个区间是(  )
A.(-$\frac{3}{4}$π,$\frac{π}{4}$)B.(-$\frac{1}{2}$π,$\frac{π}{2}$)C.(-$\frac{1}{4}$π,$\frac{3π}{4}$)D.(0,π)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.奇函数f(x)满足:①f(x)在(0,+∞)内是单调递减函数;②f(2)=0.则不等式(x-1)•f(x)>0的解集为(-2,0)∪(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=x2+4x+5-c的最小值为2,则函数y=f(x-3)的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在直角坐标系xOy中,直线l:$\left\{\begin{array}{l}{x=t}\\{y=-\sqrt{3}t}\end{array}\right.$(t为参数),曲线C1:$\left\{\begin{array}{l}{x=cosθ}\\{y=1+sinθ}\end{array}\right.$(θ为参数),以该直角坐标系的原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的方程为ρ=-2cosθ+2$\sqrt{3}$sinθ.
(1)分别求曲线C1的极坐标方程和曲线C2的直角坐标方程;
(2)设直线l交曲线C1于O、A两点,直线l交曲线C2于O、B两点,求|AB|的长.

查看答案和解析>>

同步练习册答案