精英家教网 > 高中数学 > 题目详情
8.设函数$f(x)=2\sqrt{3}sinxcosx+2{cos^2}x+a-1(a∈R,a是常数)$
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)$若f(x)在[{-\frac{π}{4},\frac{π}{4}}]上的最大值与最小值之和为\sqrt{3},求实数a的值$.

分析 (Ⅰ)利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性、单调性求出函数f(x)的最小正周期和单调递增区间.
(Ⅱ)利用正弦函数的定义域和值域,求得f(x)在[-$\frac{π}{4}$,$\frac{π}{4}$]上的最值,结合最大值与最小值之和为$\sqrt{3}$,可得a的值.

解答 解:(Ⅰ)∵函数f(x)=2$\sqrt{3}$sinxcosx+2cos2x+a-1=$\sqrt{3}$sin2x+cos2x+a=2sin(2x+$\frac{π}{6}$)+a,
故它的最小正周期为$\frac{2π}{2}$=π,
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,可得函数的增区间为[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.
(Ⅱ)在[-$\frac{π}{4}$,$\frac{π}{4}$]上,2x+$\frac{π}{6}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],故当2x+$\frac{π}{6}$=$\frac{π}{2}$时,f(x)的最大值为2+a,
当2x+$\frac{π}{6}$=-$\frac{π}{3}$时,f(x)取得最小值为-$\sqrt{3}$+a.
根据最大值与最小值之和为$\sqrt{3}$,可得2+a+(-$\sqrt{3}$+a)=$\sqrt{3}$,∴a=$\sqrt{3}$-1.

点评 本题主要考查三角恒等变换,正弦函数的周期性、单调性,正弦函数的定义域和值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知$\overrightarrow a$=(x-$\sqrt{2}$,y),$\overrightarrow b$=(x+$\sqrt{2}$,y).动点M(x,y)满足$|{\overrightarrow a}|+|{\overrightarrow b}|$=2$\sqrt{3}$
(1)求点M的轨迹C的方程;
(2)直线l与C交于A,B两点,坐标原点O到l得距离为$\frac{{\sqrt{3}}}{2}$,求△ABO面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆C:x2+y2-2x-8y+13=0,直线l:ax+y-1=0(a∈R)
(Ⅰ)若直线l被圆C截得的弦长为$2\sqrt{3}$,求直线l的方程;
(Ⅱ)若a=2,P是直线l上的动点,PA,PB是圆C的切线,A,B是切点,C是圆心,求四边形PACB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知等比数列{an},且a6+a8=4,则a6(a6+2a8)a82的值为(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.数列{an}中,a7=10,an+1=2an+2,则a3的值为(  )
A.4B.1C.-$\frac{1}{2}$D.-$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)求值:2cos215°
(2)化简:$\frac{1}{2}cosx-\frac{{\sqrt{3}}}{2}sinx$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a是函数f(x)的一个零点,且x1<a<x2,则(  )
A.f(x1)f(x2)>0B.f(x1)f(x2)<0
C.f(x1)f(x2)≥0D.以上答案均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(x,2),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则x=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设D,E,F分别为△ABC的三边BC,CA,AB的中点,若$\overrightarrow{EB}$+$\overrightarrow{FC}$=μ$\overrightarrow{AD}$,则μ=1.

查看答案和解析>>

同步练习册答案