精英家教网 > 高中数学 > 题目详情
17.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(x,2),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则x=4.

分析 利用向量共线的充要条件列出方程,求解即可.

解答 解:向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(x,2),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则4=x,
x=4.
故答案为:4.

点评 本题考查向量共线的充要条件的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.一个直角梯形的面积为2,在斜二测画法下,它的直观图面积为$\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数$f(x)=2\sqrt{3}sinxcosx+2{cos^2}x+a-1(a∈R,a是常数)$
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)$若f(x)在[{-\frac{π}{4},\frac{π}{4}}]上的最大值与最小值之和为\sqrt{3},求实数a的值$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在区间[0,π]上随机取一实数x,则事件“$\frac{{\sqrt{2}}}{2}≤sinx≤\frac{{\sqrt{3}}}{2}$”发生的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{12}$C.$\frac{{\sqrt{3}-\sqrt{2}}}{4}$D.$\frac{{\sqrt{3}-\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若关于x的不等式ax<b的解集为(-2,+∞),则关于的不等式ax2+bx-3a>0的解集为(  )
A.(-∞,-3)∪(-1,+∞)B.(-∞,-1)∪(3,+∞)C.(-3,1)D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.两条平行直线3x+4y-9=0和3x+4y+1=0的距离是(  )
A.$\frac{8}{5}$B.2C.$\frac{11}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知定义在[-2,2]上的偶函数f(x)在区间[0,2]上是减函数.若f(1-m)<f(m),则实数m的取值范围是-1≤m<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求函数f(x)=sinx-$\sqrt{3}$cosx的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等差数列{an}中,a6+a10=16,a4=2,则a6的值是(  )
A.15B.10C.5D.8

查看答案和解析>>

同步练习册答案