精英家教网 > 高中数学 > 题目详情
设函数f(x)=|x+2|+|2x-4|,g(x)=a+x.
(Ⅰ)当a=3时,解不等式f(x)≥g(x);
(Ⅱ)画出函数y=f(x)的图象,根据图象求使f(x)≥g(x)恒成立的实数a的取值范围.
考点:绝对值不等式的解法,指数函数的图像变换
专题:不等式的解法及应用
分析:(Ⅰ)当a=3时,化简函数f(x)的解析式,分类讨论求得不等式f(x)≥g(x)的解集.
(2)画出函数f(x)的图象,数形结合求得f(x)的最小值为f(2)=4,由题意可得f(2)≥g(2),由此求得a的范围.
解答: 解:(Ⅰ)当a=3时,函数f(x)=|x+2|+|2x-4|=
-3x+2,x<-2
-x+6,-2≤x≤2
3x-2,x>2

不等式即f(x)≥x+3.
x<-2
-3x+2≥x+3
 ①或
-2≤x≤2
-x+6≥x+3
 ②或
x>2
3x-2≥x+3
 ③.
解①求得x<-2,解②求得-2≤x≤
3
2
,解③求得x≥
5
2

综上可得,不等式的解集为(-∞,
3
2
]∪[
5
2
,+∞).
(2)根据f(x)的解析式,画出函数f(x)的图象,如图所示:
数形结合求得f(x)的最小值为f(2)=4,由于g(x)=a+x结合由题意可得f(2)≥g(2),即4≥a+2,求得a≤2.
点评:本题主要考查带有绝对值的函数,函数的恒成立问题,绝对值不等式的解法,体现了转化、数形结合、分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列结论中正确的是(  )
A、若两个变量的线性相关性越强,则相关系数的绝对值越接近于0
B、在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0),若ξ位于区域(0,1)的概率为0.4,则ξ位于区域(1,+∞)内的概率为0.6
C、从匀速传递的产品生产流水线上,质检员每4'分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样
D、利用随机变量Χ2来判断“两个独立事件X,Y的关系”时,算出的Χ2值越大,判断“X与Y有关”的把握就越大

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)、g(x)的图象在区间[a,b]上连续不断,且f′(x)•g(x)>f(x)•g′(x),g(x)>0,则对任意的x∈(a,b)都有(  )
A、f(x)•g(x)>f(a)•g(b)
B、f(x)•g(a)>f(a)•g(x)
C、f(x)•g(x)>f(b)•g(b)
D、f(x)•g(b)>f(b)•g(x)

查看答案和解析>>

科目:高中数学 来源: 题型:

若已知α∈(-
π
2
,0),且sin(π-α)=log8
1
4
,则cos(2π-α)的值等于(  )
A、
5
3
B、-
5
3
C、±
5
3
D、
2
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知[x]表示不超过x的最大整数,例如[-1.5]=-2,[1.2]=1.设函数f(x)=[x[x]],当x∈[0,n),(n∈N*)时,函数f(x)的值域为集合A,则A中的元素个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若α是第四象限角,则(  )
A、sinα>tanα
B、sinα<tanα
C、sinα≥tanα
D、以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

某校开展校园文化活动,其中一项是背诵古诗100首,在该项进行一段时间后,随机抽取40人,统计调查了他们会背古诗的首数,得到的数据如下:
20 21 22 23 24 24 25 26 26 27 28 29 29 29 30 30 30 31 31 31
32 32 33 34 35 35 36 36 37 38 38 38 40 40 41 42 42 43 46 48
(Ⅰ)根据调查数据补全如下分组为[20,25),[25,30),…,[40,45),[45,50]的频率直方图;
(Ⅱ)从会背的古诗首数在区间[30,40)内的同学中随机抽取1人,求他会背的古诗首数恰在区间[30,35)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sin(2x+φ)(-π≤φ≤π)的图象向左平移
π
2
个单位后,与函数y=cos(2x+
6
)的图象重合,则φ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=4,若点P(x0,y0)在圆C外,则直线l:x0x+y0y=4与圆C的位置关系为(  )
A、相离B、相切
C、相交D、不能确定

查看答案和解析>>

同步练习册答案