【题目】设无穷数列
的每一项均为正数,对于给定的正整数
,
(
),若
是等比数列,则称
为
数列.
(1)求证:若
是无穷等比数列,则
是
数列;
(2)请你写出一个不是等比数列的
数列的通项公式;
(3)设
为
数列,且满足
,请用数学归纳法证明:
是等比数列.
【答案】(1)证明见解析.(2)
(
).(答案不唯一).(3)证明见解析
【解析】
(1)通过证明
,证得数列
是等比数列,由此证得
为
数列.
(2)根据满足
的数列
是等比数列,但无穷数列
不是等比数列,举出相应的例子.
(3)首先根据已知条件得到
,再利用数学归纳法证明
(或者利用数学归纳法证明
),由此证得
是等比数列.
(1)设
是公比为
的等比数列,对于给定的正整数
,
(
),
∴
,
,
又
,∴
是等比数列,
∴
为
数列.
(2)
(
).(答案不唯一)
简洁的例子如:
(
).
(3)∵
为
数列,∴
是等比数列,其中
(
),
∴
(
),
∴
(
)是常数列,设常数为
,即
(
),
以下用数学归纳法证明(法一)
(
),
①由已知
可得:当
时命题成立;
②假设
(
,
)时命题成立,即,
,
当
时,∵
(
)是常数列,
∴
(
,
),
∴
,
等式也成立.
根据①和②可以断定,
对任何
都成立,即
是等比数列.
令
,以下用数学归纳法证明(法二)
(
),
①∵
,∴
,∴
,∴
,即
,
∴当
时命题成立,
假设
(
,
)时命题成立,即
(
);
②当
时,
,
等式也成立;
根据①和②可以断定,
对任何
都成立,即
是等比数列.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求直线
和曲线
的直角坐标方程;
(2)若点
坐标为
,直线
与曲线
交于
两点,且
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂计划建设至少3个,至多5个相同的生产线车间,以解决本地区公民对特供商品
的未来需求.经过对先期样本的科学性调查显示,本地区每个月对商品
的月需求量均在50万件及以上,其中需求量在50~ 100万件的频率为0.5,需求量在100~200万件的频率为0.3,不低于200万件的频率为0.2.用调查样本来估计总体,频率作为相应段的概率,并假设本地区在各个月对本特供商品
的需求相互独立.
(1)求在未来某连续4个月中,本地区至少有2个月对商品
的月需求量低于100万件的概率.
(2)该工厂希望尽可能在生产线车间建成后,车间能正常生产运行,但每月最多可正常生产的车间数受商品
的需求量
的限制,并有如下关系:
商品 |
|
|
|
车间最多正常运行个数 | 3 | 4 | 5 |
若一个车间正常运行,则该车间月净利润为1500万元,而一个车间未正常生产,则该车间生产线的月维护费(单位:万元)与月需求量有如下关系:
商品 |
|
|
未正常生产的一个车间的月维护费(万元) | 500 | 600 |
试分析并回答该工厂应建设生产线车间多少个?使得商品
的月利润为最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,直线
交椭圆
于
两点,
为坐标原点.
(1)若直线
过椭圆
的右焦点
,求
的面积;
(2)椭圆
上是否存在点
,使得四边形
为平行四边形?若存在,求出所有满足条件的
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代几何中的勾股容圆,是阐述直角三角形中内切圆问题. 此类问题最早见于《九章算术》“勾股”章,该章第16题为:“今有勾八步,股十五步. 问勾中容圆,径几何?”意思是“直角三角形的两条直角边分别为8和15,则其内切圆直径是多少?”若向上述直角三角形内随机抛掷120颗米粒(大小忽略不计,取
),落在三角形内切圆内的米粒数大约为( )
A.54B.48C.42D.36
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年,新型冠状病毒引发的疫情牵动着亿万人的心,八方驰援战疫情,众志成城克时难,社会各界支援湖北共抗新型冠状病毒肺炎,重庆某医院派出3名医生,2名护士支援湖北,现从这5人中任选2人定点支援湖北某医院,则恰有1名医生和1名护士被选中的概率为( )
A.0.7B.0.4C.0.6D.0.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,5,11,21,37,6l,95,则该数列的第8项为( )
A.99B.131C.139D.141
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C :
与圆
相交于M,N,P,Q四点,四边形MNPQ为正方形,△PF1F2的周长为![]()
(1)求椭圆C的方程;
(2)设直线l与椭圆C相交于A、B两点
若直线AD与直线BD的斜率之积为
,证明:直线恒过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com