精英家教网 > 高中数学 > 题目详情
已知△ABC中,a=6,b=8,c=10,则cosA=(  )
A、
4
5
B、
3
5
C、
2
5
D、
1
5
考点:余弦定理
专题:解三角形
分析:利用余弦定理表示出cosA,将三边长代入求出cosA的值即可.
解答: 解:∵△ABC中,a=6,b=8,c=10,
∴cosA=
b2+c2-a2
2bc
=
64+100-36
160
=
4
5

故选:A.
点评:此题考查了余弦定理,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知方程
x2
2+m
+
y2
m-1
=1表示双曲线,则m的取值范围是(  )
A、m>1
B、m<-2
C、m>1或m<-2
D、-2<m<1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为(-∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x-1,则f(2014)的值为(  )
A、-2B、-1C、0D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
1+sinθ+cosθ
1+sinθ-cosθ
=
1
2
,则sin2θ+2cos2θ=(  )
A、
4
3
B、-
4
3
C、-
6
25
D、
6
25

查看答案和解析>>

科目:高中数学 来源: 题型:

类比下列平面内的结论,在空间中仍能成立的是(  )
①平行于同一直线的两条直线平行;
②垂直于同一直线的两条直线平行;
③如果一条直线与两条平行线中的一条垂直,则必与另一条垂直;
④如果一条直线与两条平行线中的一条相交,则必与另一条相交.
A、①②④B、①③
C、②④D、①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-2x+1,x≥0
4-x2,x<0
,则f(f(2))=(  )
A、4B、-5C、5D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

e1
e2
是夹角为60°的两个单位向量,则向量
a
=2
e1
+
e2
与向量
b
=-3
e1
+2
e2
的夹角为(  )
A、120°B、90°
C、60°D、30°

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若AC⊥BC,AC=b,BC=a,则△ABC的外接圆半径r=
a2+b2
2
,将此结论拓展到空间,可得出的正确结论是:在四面体S-ABC中,若SA、SB、SC两两互相垂直,SA=a,SB=b,SC=c,则四面体S-ABC的外接球半径R=(  )
A、
a2+b2+c2
2
B、
a2+b2+c2
3
C、
3a3+b3+c3
3
D、
3abc

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线l1:y=k1x+1,l2:y=k2x-1,其中实数k1,k2满足k1k2=-
1
9

(Ⅰ)证明:l1与l2相交;
(Ⅱ)求l1与l2的交点P的轨迹C的方程;
(Ⅲ)过点Q(1,0)作直线l(与x轴不垂直)与轨迹C交于M、N两点,与y轴交于点R,若
RM
MQ
RN
NQ
,证明:λ+μ为定值.

查看答案和解析>>

同步练习册答案