精英家教网 > 高中数学 > 题目详情
15.宜昌一中为了研究学生的性别和对待某一活动的态度(支持与不支持)的关系,运用2×2列联表进行独立性检验,经计算K2=7.069,则有多大的把握认为“学生性别与支持该活动”有关系(  )
附:
P(K2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828
A.0.1%B.1%C.99%D.99.9%

分析 由题意结合独立性检验的结论和题中所给的表格即可求得最终结果.

解答 解答:∵K2=7.069>6.635,对照表格可得:有99%的把握说学生性别与支持该活动有关系.
故选:C.

点评 本题考查了独立性检验的思想及其应用,重点考查学生对基础概念的理解,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.函数f(x)=ex-2x,x∈R有(  )
A.极大值4+ln4B.极大值2+2ln2C.极小值4-ln4D.极小值2-2ln2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,F1,F2是椭圆的两个焦点,P是椭圆C上的任意一点,且△PF1F2的周长为4+2$\sqrt{3}$.
(1)求椭圆C1的方程;
(2)设椭圆C1的左、右顶点分别为A、B,过椭圆C1上的一点D作x轴的垂线交x轴于点E,若C点满足$\overrightarrow{AB}$⊥$\overrightarrow{BC}$,$\overrightarrow{AD}$∥$\overrightarrow{OC}$,连接AC交DE于点P,求证:PD=PE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设f(x)是定义域在R上的偶函数,它的图象关于直线x=2对称,已知x∈[-2,2]时,函数f(x)=-x2+1,则x∈[-6,-2]时,f(x)等于(  )
A.-(x+4)2+1B.-(x-4)2+1C.-(x-4)2-1D.-(x+4)2-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=x3+ax2+bx+a2,在x=1时有极值10且a>0,那么a的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直线l的参数方程为$\left\{\begin{array}{l}x=1+t\\ y=-1+t\end{array}$(t为参数,t∈R),则直线l的普通方程为(  )
A.x-y-2=0B.x-y+2=0C.x+y=0D.x+y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.作为重庆一中民主管理的实践之一,高三年级可以优先选择教学楼,为了调迁了解同学们的意愿,现随机调出了16名男生和14名女生,结果显示,男女生中分别有10人和5人意愿继续留在第一教学楼.
(1)根据以上数据完成以下2×2的列联表:
 留在第一教学楼不留在第一教学楼总计
男生10 16
女生5 14
总计  30
(2)根据列联表的独立性检验,能否有90%的把握认为性别与意愿留在第一教学楼有关?
(3)如果从意愿留在第一教学楼的女生中(其中恰有3人精通制作PPT),选取2名负责为第一教学楼各班图书角作一个总展示的PPT,用于楼道电子显示屏的宣传,那么选出的女生中至少有1人能胜任此工作的概率是多少?
参考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k)0.400.250.100.010
k0.7081.3232.7066.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设f(x)=a(x-5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线斜率为2.
(1)确定a的值;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)已知x>0,y>0且x+y=1,求$\frac{8}{x}$$+\frac{2}{y}$的最小值;
(2)已知0<x<2,求y=$\sqrt{3x(8-3x)}$的最大值.

查看答案和解析>>

同步练习册答案